Page: Last modified: 2024-05-24
Code Reference(s):
NBC20 Div.B Appendix C (first printing)
Subject:
Climatic Loads
Title:
Updated Climatic Data
Description:
This proposed change updates Appendix C, including Table-C2, to incorporate the effects of climate change.
This change could potentially affect the following topic areas:

Problem

In previous editions of the National Building Code of Canada (NBC) climatic data provided in Table C-2 in Appendix C were based on historical weather observations collected and analyzed by Environment and Climate Change Canada (ECCC). It was assumed that climatic data were time-independent (or stationary). However, in the face of extensive evidence that the climate is changing across Canada, this practice raises real safety concerns for the design of buildings.

To assess the impacts of climate change trends on the climatic data and their associated climatic loads and load combinations specified in the NBC, future climatic data sets have been developed by ECCC [1] based on the current body of research in climate modelling. These models simulate how the climate statistics are likely to change in various regions of Canada between 2024 and 2100 under various greenhouse gas (GHG) emissions scenarios called representative concentration pathways (RCPs). An RCP is a greenhouse gas concentration time profile. Four RCPs were used for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) in 2014: RCP2.6, RCP4.5, RCP6 and RCP8.5 (corresponding to radiative forcing values of 2.6 W/m2, 4.5 W/m2, 6 W/m2 and 8.5 W/m2, respectively, in 2100). These pathways represent different future greenhouse gas concentration time profiles that are possible depending on the volume of greenhouse gases emitted.

There has been international recognition in recent decades that the earth’s climate is changing, with the potential to create higher structural loads and more adverse environmental conditions than currently specified based on historical observations. The consequences of this pose an increased risk to building structural integrity and functionality, and occupant life safety. More frequent high-heat events also increase risk to occupant life safety.

In addition to the need to update NBC Table C-2 to account for climate change effects, it was recognized that the current approach to establishing design wind and snow loads, referred to as the "uniform hazard" approach, does not result in uniform reliability of building performance across the country. In order to harmonize performance expectations of buildings under these load effects, a new methodology is proposed to define the climatic loads, called the "uniform risk" approach, in which the ultimate load is specified directly with an implied load factor of 1.0, similar to current earthquake design practice.

Justification

The results of targeted research conducted by ECCC [1] specifically designed to address the effect of future projections of climatic conditions were accounted for in the update of each parameter of NBC Table C-2. The proposed approach for building design is based on a 50-year time horizon (from 2025 to 2075) and the RCP8.5 future emissions scenario, corresponding to a 2.5°C global warming compared to the 1986-2016 baseline period. The projected future values are applied to the parameters in NBC Table C-2 using the following approach.

For parameters used for structural and building envelope design, such as the effects of snow, rain, wind and moisture, if the projected future value in the 50-year time horizon is greater than the current updated value calculated from historical observations, the projected value is used. If the future value is projected to decrease, the current value is retained. This approach, called the "Minimax Method," assures that over the 50-year time horizon the annual risk of failure does not exceed that which has historically been considered as acceptable. For some variables, such as temperature, the governing case for design may be the minimum, while for others, such as wind and snow, it is the maximum. For instance, for wind, projections mostly show increases in reference pressure in the future, making the last year of service life the governing case; for snow, projections mostly show decreases in snow load in the future, making the first year of service life the worst case. This is deemed an appropriate approach that ensures that the NBC Table C-2 values reflect the maximum loads expected that correspond to the specified annual probability of exceedance.

The non-stationarity of future climate due to the impact of climate change is embedded in NBC Table C-2 using climate change factors derived from regional averages using the Minimax approach [2], [3]. For reference design wind pressures, most areas in Canada have a climate change factor of 1.05, while locations in Ontario, the Atlantic provinces and west of 120°W in British Columbia have a climate change factor of 1.1. For ground snow loads, excepting the northern territories where a climate change factor of 1.05 applies, most regions have a climate change factor of 1.0, as the governing scenario is based on the present climate. The Minimax approach to adopt future values is also applied to the other parameters, using the future change factors from the targeted research results. For some parameters, such as the one-day and 15-minute rainfalls, there are increases at all locations. For the moisture index, future values are applied at locations where the moisture load increases, and the values remain unchanged elsewhere.

In future updates of NBC Table C-2 values, it is expected that current values at that time will be updated to a new baseline period. Projected future values, based on ongoing research, will also be updated and referenced to the same new baseline period. In this way, both the current and future values will be reset to reflect current knowledge at the time of the future update, and the future values using the Minimax Method for this update will not be compounded in future updates.

Terminology is also affected by the effects of a changing climate. Low-probability events have often been described as having a return period which, in a stationary (non-changing) climate, is defined as the average interval in years between such events. The reciprocal of the return period is defined as the annual exceedance probability. For instance, a 50-year return period event has an annual probability of 1/50 or 0.02. In a changing climate, the definition of the return period as an interval between events is not accurate. As a result, low-probability events are now identified with their annual exceedance probability rather than return period, since the annual probability can and often will change over time. For instance, a 50-year return period event is now described as a "1/50 annual probability event," or sometimes just as the "1/50 value."

The uniform risk approach for wind results in a new 1/500 annual probability wind pressure value to reflect the ultimate load. In thunderstorm-prone regions, for wind values at low probabilities such as 1/500, the separate analysis of convective (e.g., thunderstorm) and synoptic (e.g., active low-pressure system with an embedded weather front) wind events generally results in higher wind values than the usual (up to the 2020 edition of the NBC) approach of analyzing the commingled convective and synoptic wind events as a single data set. This effect is not significant at higher annual probabilities, such as 1/10 and 1/50. In addition to future values applied with the Minimax approach, the 500-year wind pressure values also account for the separate analysis of convective and synoptic wind events.

For parameters related to temperature and heating and cooling loads, such as degree-days below 18°C and 15°C, and January and July design temperatures, future values corresponding to a 50-year time horizon and RCP8.5 emissions scenario are applied in a similarly appropriate approach. Since warming is projected to occur for all locations, the current values for degree-day data and January design temperatures are all retained. 

Analysis of the energy performance of buildings does not indicate an increased risk of overheating in buildings when cooling systems are provided and sized using historical July temperature data, in the context of a future climate scenario.

However, sizing mechanical cooling systems based on future 50-year July temperature projections could result in oversized cooling equipment, which could increase construction costs. Also, the equipment may never experience the elevated temperature condition during its service life, which is considerably less than 50 years. Oversized cooling equipment can decrease energy efficiency and increase energy costs. The resulting oversizing could make equipment short-cycling worse and lead to inability of the equipment to meet latent loads, resulting in potentially excessive indoor humidity levels. In addition, short-cycling will decrease the service life of equipment. For the purpose of cooling system equipment design, NBC Table C-2 provides July temperature data based on historical observations.

Further work is proposed on the use of future climatic data in energy codes.

Extensive changes to the climatic design data in NBC Table C-2 and related documentation in NBC Appendix C implement the approach described above.

References

[1] Cannon, A.J., Jeong, D.I., Zhang, X., and Zwiers, F. W. Climate-Resilient Buildings and Core Public Infrastructure: An Assessment of the Impact of Climate Change on Climatic Design Data in Canada. Environment and Climate Change Canada, Ottawa, ON, 2020.

[2] Hong, H.P., Tang, Q., Yang, S.C., Cui, X.Z., Cannon, A.J., Lounis, Z., and Irwin, P. Calibration of the design wind load and snow load considering the historical climate statistics and climate change effects. Structural Safety, Vol. 93, 10213, 2021.

[3] Li, S.H., Irwin, P., Lounis, Z., Attar, A., Dale, J., Gibbons, M., and Beaulieu, S. Effects of Nonstationarity of Extreme Wind Speeds and Ground Snow Loads in a Future Canadian Changing Climate. Natural Hazards Review, Vol. 23, No. 4, 04022022, 2022.

PROPOSED CHANGE

Appendix C Climatic and Seismic Information for Building Design in Canada
Footnote: This information is included for explanatory purposes only and does not form part of the requirements.
Introduction
The great diversity of climate in Canada has a considerable effect on the performance of buildings; consequently, building design must reflect this diversity. This Appendix briefly describes how climatic design values are computed and provides recommended design data for a number of cities, towns, and lesser populated680 locations across Canada. Through the use of such data, appropriate allowances can be made for climate variations in different localities of Canada and the National Building Code can be applied nationally.
The climatic design data presented in Table C-2 are based on weather observations collected by the Meteorological Service of Canada, Environment and Climate Change Canada (ECCC), and include the effects of future projections of climatic conditions where appropriate. The data were researched and analyzed for the Canadian Commission on Building and Fire CodesCanadian Board for Harmonized Construction Codes by Environment and Climate Change CanadaECCC (they also include results from projects by other agencies).
As it is not practical to list values for all municipalitieslocations in Canada, recommended climatic design values for locations not listed can be obtained by e-mail from the Engineering Climate Services Unit of ECCCEnvironment and Climate Change Canada at scg-ecs@ec.gc.ca. It should be noted, however, that these recommended values may differ from the legal requirements set by provincial, territorial or municipal building authorities.
The information on seismic hazard given in this Appendix has been provided by Natural Resources Canada.
General
The choice of climatic elements tabulated in this Appendix and the form in which they are expressed have been dictated largely by the requirements for specific values in several sections of this Code. These elements include ground snow loads, wind pressures, design temperatures, heating degree-days, one-day and 15-minute rainfalls, and annual total precipitation values, and winter average temperatures and wind speeeds. The following notes briefly explain the significance of these particular elements in building design, and indicate which weather observations were used and how they were analyzed to yield the required design values.
Table C-2 lists design weather recommendations and elevations for over 600 680 locations, which have been chosen based on a variety of reasons. Many incorporated cities and towns with significant populations are included unless located close to larger cities. For sparsely populated areas, many smaller towns and villages are listed. Other locations have been added to the list when the demand for climatic design recommendations at these sites has been significant. The named locations refer to the specific latitude and longitude defined by the Gazetteer of Canada (Natural Resources Canada), available from Publishing and Depository Services Canadathe Government of Canada Publications Directorate, Public Works and Government Services CanadaPublic Services and Procurement Canada, Ottawa, Ontario K1A 0S5 (www.publications.gc.ca). The elevations are given in metres and refer to heights above sea level.
Almost all of the weather observations used in preparing Table C-2 were, of necessity, observed at inhabited locations. To estimate design values for arbitrary locations, the observed or computed values for the weather stations were mapped and interpolated appropriately. Where possible, adjustments have been applied for the influence of elevation and known topographical effects. Such influences include the tendency of cold air to collect in depressions, for precipitation to increase with elevation, and for generally stronger winds near large bodies of water. Elevations have been added to Table C-2 because of their potential to significantly influence climatic design values.
Since interpolation from the values in Table C-2 to other locations may not be valid due to local and other effects, Environment and Climate Change Canada will provide climatic design element recommendations for locations not listed in Table C-2. Local effects are particularly significant in mountainous areas, where the values apply only to populated valleys and not to the mountain slopes and high passes, where very different conditions are known to exist.
Changing and Variable Climates
Climate is not static. At any location, weather and climatic conditions vary from season to season, year to year, and over longer time periods (climate cycles). This has always been the case. In fact, evidence is mounting that the climates of Canada are changing and will continue to change significantly into future. When estimating climatic design loads, this variability can be considered using appropriate statistical analysis, data records spanning sufficient periods, and meteorological judgement. The analysis generally assumes that the past climate will be representative of the future climate.
Past and ongoing modifications to atmospheric chemistry (from greenhouse gas emissions and land use changes) are expected to alter most climatic regimes in the future despite the success of the most ambitious greenhouse gas mitigation plans.(1) Some regions could see an increase in the frequency and intensity of many weather extremes, which will accelerate weathering processes. Consequently, many buildings will need to be designed, maintained and operated to adequately withstand ever changing climatic loads.
Similar to global trends, the last decade in Canada was noted as the warmest in instrumented record. Canada has warmed, on average, at almost twice the rate of the global average increase, while the western Arctic is warming at a rate that is unprecedented over the past 400 years.(1) Mounting evidence from Arctic communities indicates that rapid changes to climate in the North have resulted in melting permafrost and impacts from other climate changes have affected nearly every type of built structure. Furthermore, analyses of Canadian precipitation data shows that many regions of the country have, on average, also been tending towards wetter conditions.(1) In the United States, where the density of climate monitoring stations is greater, a number of studies have found an unambiguous upward trend in the frequency of heavy to extreme precipitation events, with these increases coincident with a general upward trend in the total amount of precipitation. Climate change model results, based on an ensemble of global climate models worldwide, project that future climate warming rates will be greatest in higher latitude countries such as Canada.(2)
The analysis used to estimate the climatic design data for previous editions of the NBC assumed that the past climate would be representative of the future climate. Starting in the 2025 edition, the climatic design data incorporate the effects of future projections of climatic conditions that are based on the current body of research in climate modeling. The models used in the analysis simulate how the climate statistics are likely to change in various regions of Canada from the present to 2100 under various greenhouse gas emissions scenarios called representative concentration pathways (RCPs).
An RCP is a greenhouse gas concentration time profile. Four RCPs were used for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report in 2014: RCP2.6, RCP4.5, RCP6 and RCP8.5 (corresponding to radiative forcing values of 2.6 W/m2, 4.5 W/m2, 6 W/m2 and 8.5 W/m2, respectively, in 2100). These pathways represent different future greenhouse gas concentration time profiles that are possible depending on the volume of greenhouse gases emitted.
In targeted projects reported by Cannon et al.,(14) Gaur et al.,(15) the Pacific Climate Impacts Consortium,(16) and RWDI,(17)(18) global climate models augmented with nested regional models provided projected future values of the climatic data in Table C-2 for average global warming levels of 0.5°C to 3.5°C, in increments of 0.5°C, relative to a 1986–2016 baseline. The projected future changes to the climatic data were incorporated in a calibration to derive climate change factors reflecting regional averages.(19) The climatic values listed in Table C-2 were obtained by applying the “Minimax” method and a target-reliability-based approach,(19)(20) as described in the following.
For structural design parameters, such as wind and snow loads, the projected future values were determined for an average global warming of 2.5°C over a 50-year time horizon, corresponding to emissions scenario RCP8.5. For locations where an increase is projected, the future value has been applied. For locations where a decrease is projected, the current value has been retained. This approach is deemed appropriate to protect life safety by ensuring that structures are designed to withstand the highest loads for the climatic conditions expected in the 50-year time horizon.
Similarly, for heating- and cooling-related parameters, such as design temperatures and degree-days below 18°C and 15°C, the projected future values were determined for an average global warming of 2.5°C over the same 50-year time horizon, corresponding to emissions scenario RCP8.5. For locations where the heating or cooling load is projected to increase, the future value has been applied. For locations where the load is projected to decrease, the current value has been retained. According to this approach, since warming is projected for all locations in Canada, the current values have been retained for degree-days below 18°C and 15°C and for January design temperatures, whereas projected future changes have been applied to July dry-bulb and wet-bulb design temperatures.
It is expected that, in future editions of the Code, the current values will be updated based on recent observations, reflecting changes that are occurring, and will correspond to the baseline observational period on which the future climate projections will be based. The future climate projections will be updated based on improved climate models developed by the international scientific community, whose results are released periodically by the IPCC, and on improved targeted research on future projections of the climatic design data in the NBC.
January Design Temperatures
A building and its heating system should be designed to maintain the inside temperature at some pre-determined level. To achieve this, it is necessary to know the most severe weather conditions under which the system will be expected to function satisfactorily. Failure to maintain the inside temperature at the pre-determined level will not usually be serious if the temperature drop is not great and if the duration is not long. The outside conditions used for design should, therefore, not be the most severe in many years, but should be the somewhat less severe conditions that are occasionally but not greatly exceeded.
The January design temperatures are based on an analysis of January air temperatures only. Wind and solar radiation also affect the inside temperature of most buildings and may need to be considered for energy-efficient design.
The January design temperature is defined as the lowest temperature at or below which only a certain small percentage of the hourly outside air temperatures in January occur. In the past, a total of 158 stations with records from all or part of the period 1951-66 formed the basis for calculation of the 2.5 and 1% January temperatures. Where necessary, the data were adjusted for consistency. Since most of the temperatures were observed at airports, design values for the core areas of large cities could be 1 or 2°C milder, although the values for the outlying areas are probably about the same as for the airports. No adjustments were made for this urban island heat effect. The design values for the next 20 to 30 years will probably differ from these tabulated values due to year-to-year climate variability and global climate change resulting from the impact of human activities on atmospheric chemistry.
The design temperatures were reviewed and updated using hourly temperature observations from 480 stations for a 25-year period up to 2006 with at least 8 years of complete data. These data are consistent with data shown for Canadian locations in the 2009 Handbook of Fundamentals(3) published by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The most recent 25 years of record were used to provide a balance between accounting for trends in the climate and the sampling variation owing to year-to-year variation. The 1% and 2.5% values used for the design conditions represent percentiles of the cumulative frequency distribution of hourly temperatures and correspond to January temperatures that are colder for 8 and 19 hours, respectively, on average over the long term.
The 2.5% January design temperature is the value ordinarily used in the design of heating systems. In special cases, when the control of inside temperature is more critical, the 1% value may be used. Other temperature-dependent climatic design parameters may be considered for future issueseditions of the Codethis document.
Projected future changes to the January design temperatures, corresponding to an average global warming of 2.5°C, are available. For the locations in Table C-2, the average projected increase in the January design temperatures is about 5°C, with warming projected at all locations. Accordingly, projected future changes have not been applied.
July Design Temperatures
A building and its cooling and dehumidifying system should be designed to maintain the inside temperature and humidity at certain pre-determined levels. To achieve this, it is necessary to know the most severe weather conditions under which the system is expected to function satisfactorily. Failure to maintain the inside temperature and humidity at the pre-determined levels will usually not be serious if the increases in temperature and humidity are not great and the duration is not long. The outside conditions used for design should, therefore, not be the most severe in many years, but should be the somewhat less severe conditions that are occasionally but not greatly exceeded.
The summer design temperatures in this Appendix are based on an analysis of July air temperatures and humidity valueshumidities. Wind and solar radiation also affect the inside temperature of most buildings and may, in some cases, be more important than the outside air temperature. More complete summer and winter design information can be obtained from Environment and Climate Change Canada.
The July design dry-bulb and wet-bulb design temperatures were reviewed and updated using hourly temperature observations from 480 stations for a 25-year period up to 2006. These data are consistent with data shown for Canadian locations in the 2009 Handbook of Fundamentals(3) published by ASHRAE. As with January design temperatures, data from the most recent 25-year period were analyzed to reflect any recent climatic changes or variations. The 2.5% values used for the dry- and wet-bulb design conditions represent percentiles of the cumulative frequency distribution of hourly dry- and wet-bulb temperatures and correspond to July temperatures that are higher for 19 hours on average over the long term.
Projected future changes to the July design temperatures, corresponding to an average global warming of 2.5°C, are available. For the locations in Table C-2, the average projected increase in the July dry-bulb design temperatures is about 4.1°C, with warming projected at all locations. The average projected increase in the July wet-bulb design temperatures is about 3.4°C, with warming projected at all locations. These projected future increases are applied to the “historical” July design temperatures, which were updated based on historical observations, to provide the “future” July design temperatures.
Analysis of the energy performance of buildings does not indicate an increased risk of overheating in buildings when mechanical cooling systems are provided and sized using historical July temperatures in the context of a future climate scenario. However, sizing mechanical cooling systems based on future 50-year July temperature projections could result in oversized cooling equipment, which could increase construction costs. Also, the equipment may never experience the elevated temperature condition during its expected service life, which is considerably less than 50 years.
Oversized cooling equipment could decrease the building's energy efficiency and increase energy costs. The oversizing could also lead to increased short-cycling of equipment and to inability of the equipment to meet latent loads, resulting in potentially excessive indoor humidity levels. In addition, increased short-cycling could decrease the service life of the equipment. Therefore, for the purpose of the design of mechanical cooling system equipment, Table C-2 provides July temperatures based on historical observations.
Heating Degree-Days
The rate of consumption of fuel or energy required to keep the interior of a small building at 21°C when the outside air temperature is below 18°C is roughly proportional to the difference between  18°C and the outside temperature. Wind speed, solar radiation, the extent to which the building is exposed to these elements and the internal heat sources also affect the heat required and may have to be considered for energy-efficient design. For average conditions of wind, radiation, exposure, and internal sources, however, the proportionality with the temperature difference generally still holds.
Since the fuel required is also proportional to the duration of the cold weather, a convenient method of combining these elements of temperature and time is to add the differences between 18°C and the mean temperature for every day in the year when the mean temperature is below  18°C. It is assumed that no heat is required when the mean outside air temperature for the day is 18°C or higher.
Although more sophisticated computer simulations using other forms of weather data have now almost completely replaced degree-day-based calculation methods for estimating annual heating energy consumption, degree-days remain a useful indicator of relative severity of climate and can form the basis for certain climate-related Code requirements.
The degree-days below 18°C were compiled for 1300 stations for the 25-year period ending in 2006. This analysis period is consistent with the one used to derive the design temperatures described above and with the approach used by ASHRAE.(3)
A difference of only one Celsius degree in the mean annual temperature will cause a difference of 250 to 350 in the Celsius degree-days. Since differences of 0.5 of a Celsius degree in the mean annual temperature are quite likely to occur between two stations in the same town, heating degree-days cannot be relied on to an accuracy of less than about 100 degree-days.
Heating degree-day values for the core areas of larger cities can be 200 to 400 degree-days less (warmer) than for the surrounding fringe areas. The observed degree-days, which are based on daily temperature observations, are often most representative of rural settings or the fringe areas of cities.
Projected future changes to the heating degree-day values, corresponding to an average global warming of 2.5°C, are available. For the locations in Table C-2, with warming projected at all locations, the average projected decrease in the degree-days below 18°C values is about 1 100 degree-days. Accordingly, projected future changes have not been applied.
Degree-days below 15°C values, which are useful for building heating calculations, are provided in the 2025 edition of the NBC. These values are based on an ECCC analysis of observations from 1407 stations for the period from 1991 to 2020.
Snow Loads
The roof of a building should be designedable to safely support the snow loads expected during the building's service lifethe greatest weight of snow that is likely to accumulate on it in many years. Some observations of snow on roofs have been made in Canada, but not enough to form the basis for estimating roof snow loads throughout the country. Similarly, observations of the weight, or water equivalent, of the snow on the ground have not been available in digital form in the past. The observations of roof loads and water equivalents are very useful, as noted below, but the measured depth of snow on the ground is used to provide the basic information for a consistent set of snow loads.
As reported by Newark et al.,(5) in the 1990 to 2020 editions of the NBC, Theestimation of the design snow load on a roof was estimated from snow depth observations using a procedure that involves the following steps:
  1. The depth of snow on the ground, which has having an annual probability of exceedance of 1-in-50, is computed.
  2. The appropriate specific weight is selected and used to convert snow depth to loads, Ss.
  3. The load, Sr, which is due to rain falling on the snow, is computed.
  4. Because the accumulation of snow on roofs is often different from that on the ground, adjustments are applied to the ground snow load to provide a design snow load on a roof.
The annual maximum depth of snow on the ground has been assembled for 1618 stations for which data has been recorded by the Meteorological Service of Canada (MSC). The period of record used varied from station to station, ranging from 7 to 38 years. These data were analyzed using a Gumbel extreme value distribution fitted using the method of moments(4) as reported by Newark et al.(5) The resulting values are the snow depths, which have a probability of 1-in-50 of being exceeded in any one year.
The specific weight of old snow generally ranges from 2 to 5 kN/m3, and it is usually assumed in Canada that 1 kN/m3 is the average for new snow. Average specific weights of the seasonal snow pack have been derived for different regions across the country(6) and an appropriate value has been assigned to each weather station. Typically, the values average 2.01 kN/m3 east of the continental divide (except for 2.94 kN/m3 north of the treeline), and range from 2.55 to 4.21 kN/m3 west of the divide. The product of the 1-in-50 snow depth and the average specific weight of the seasonal snow pack at a station is converted to the snow load (SL) in units of kilopascals (kPa).
Except for the mountainous areas of western Canada, the values of the ground snow load at MSC stations were normalized assuming a linear variation of the load above sea level in order to account for the effects of topography. They were then smoothed using an uncertainty-weighted moving-area average in order to minimize the uncertainty due to snow depth sampling errors and site-specific variations. Interpolation from analyzed maps of the smooth normalized values yielded a value for each location in Table C-2, which could then be converted to the listed code values (Ss) by means of an equation in the form:
Ss = smooth normalized SL + bZ
where b is the assumed rate of change of SL with elevation at the location and Z is the location's elevation above mean sea level (MSL). Although they are listed in Table C-2 to the nearest tenth of a kilopascal, values of Ss typically have an uncertainty of about 20%. Areas of sparse data in northern Canada were an exception to this procedure. In these regions, an analysis was made of the basic SL values. The effects of topography, variations due to local climates, and smoothing were all subjectively assessed. The values derived in this fashion were used to modify those derived objectively.
For the mountainous areas of British Columbia, Yukon, and the foothills area of Alberta, a more complex procedure was required to account for the variation of loads with terrain and elevation. Since the MSC observational network often does not have sufficient coverage to detail this variability in mountainous areas, additional snow course observations were obtained from the provincial and territorial governments of British Columbia, Yukon, and Alberta. The additional data allowed detailed local analysis of ground snow loads on a valley-by-valley basis. Similar to other studies, the data indicated that snow loads above a critical or reference level increased according to either a linear or quadratic relation with elevation. The determination of whether the increase with elevation was linear or quadratic, the rate of the increase and the critical or reference elevation were found to be specific to the valley and mountain ranges considered. At valley levels below the critical elevation, the loads generally varied less significantly with elevation. Calculated valley- and range-specific regression relations were then used to describe the increase of load with elevation and to normalize the MSC snow observations to a critical or reference level. These normalized values were smoothed using a weighted moving-average.
Tabulated values cannot be expected to indicate all the local differences in Ss. For this reason, especially in complex terrain areas, values should not be interpolated from Table C-2 for unlisted locations. The values of Ss in the Table apply for the elevation and the latitude and longitude of the location, as defined by the Gazetteer of Canada. Values at other locations can be obtained from Environment and Climate Change Canada.
The heaviest loads frequently occur when the snow is wetted by rain, thus the rain load, Sr, was estimated to the nearest 0.1 kPa and is provided in Table C-2. When values of Sr are added to Ss, this provides a 1/50 annual probability 1-in-50-year estimate of the combined ground snow and rain load. The values of Sr are based on an analysis of about 2100 weather station values of the 1/50 annual probability 1-in-50-year one-day maximum rain amount. This return period annual probability value is appropriate because the rain amounts correspond approximately to the joint frequency of occurrence of the one-day rain on maximum snow packs. For the purpose of estimating rain on snow, the individual observed one-day rain amounts were constrained to be less than or equal to the snow pack water equivalent, which was estimated by a snow pack accumulation model reported by Bruce and Clark.(7)
The results from surveys of snow loads on roofs indicate that average roof loads are generally less than loads on the ground. The conditions under which the design snow load on the roof may be taken as a percentage of the ground snow load are given in Subsection 4.1.6. The Code also permits further decreases in design snow loads for steeply sloping roofs, but requires substantial increases for roofs where snow accumulation may be more rapid due to such factors as drifting. Recommended adjustments are given in the "Structural Commentaries (User's Guide – NBC 2020: Part 4 of Division B)".
The ground snow load values, Ss, were updated for the 2015 edition of the Code using a similar approach to the one used for the ground snow load update in the 1990 edition. The Gumbel extreme value distribution was fitted to the annual maxima of daily snow depth observations made at over 1400 weather stations, which were compiled from 1990 onward—to as recently as 2012 for some stations—to calculate the 50-year return period1/50 annual probability snow depth. The 50-year1/50 annual probability ground snow load was then calculated for each weather station by combining the 50-year 1/50 annual probability snow pack depth with the assigned snow pack density, as described above. The Ss values for each location in Table C-2 were compared with the updated weather station values and revised accordingly. As a result, Ss values remain unchanged for about 84% of the locations, have increased for 11% of the locations, and have decreased for 4% of the locations. The greatest proportion of increases was for locations in the Yukon, Northwest Territories, and Nunavut.
In the 2025 edition of the NBC, the 1/50 annual probability Ss and Sr values are unchanged from the previous edition, except that projected future changes, corresponding to an average global warming of 2.5°C, have been applied using the Minimax approach (i.e., increases have been applied where the projected future values are higher, and the current values have been retained where the projected future values are lower). According to RWDI,(18) the projected future values are lower for locations in southern Canada (the 10 provinces) and higher for locations in northern Canada (Yukon, Northwest Territories and Nunavut) where a future change factor of 1.05 has been applied.
Footnote: Annual probability is now used to describe low-probability events instead of return period, which was frequently used previously. In an unchanging climate, the return period is defined as the average interval, in years, within which a given value occurs or is exceeded. It is the reciprocal of the annual exceedance probability. For instance, a 50-year return period value has a probability of 1/50, or 0.02, of being exceeded in any year. In a changing climate, the interpretation of return period as an average interval is not strictly accurate; rather, the return period is defined only as the reciprocal of the annual exceedance probability, which can change over time. The term “return period” is no longer used to refer to the frequency of certain climate events. The term “annual probability” is now used for this purpose (e.g., “1/50 annual probability” or sometimes “1/50 event” or “1-in-50 event”).
Significantly, in the 2025 edition of the NBC, the 1/1000 annual probability Ss and Sr values are provided to facilitate the change to the “uniform risk” approach, in which the climatic design loads are specified directly at the ultimate load levels. Further details regarding the uniform risk approach can be found in the Commentary entitled Limit States Design in the “Structural Commentaries (User's Guide – NBC 2025: Part 4 of Division B).”
In previous editions of the Code in which the “uniform hazard” approach was used, the calculation of roof snow loads for ultimate limit state design for strength involved applying a load factor of 1.5 to the 1/50 Ss and Sr values for all locations. The application of the 1.5 load factor to the 1/50 annual probability Ss and Sr values results in equivalent 1/1000 annual probability Ss and Sr values. However, the actual 1/1000 values depend on the distribution of the annual maximum values used in the extreme value analysis and vary regionally across Canada, resulting in varying degrees of risk and hence structural reliability.
The uniform risk approach adopted in the 2025 edition uses the actual 1/1000 Ss values calculated using regional data and a load factor reduced to 1.0. As reported by RWDI,(18) the 1/1000 Ss values were calculated using statistical properties of the annual maximum snow depth series used for the most recent snow load update in the 2015 edition. These actual 1/1000 Ss values reflect regional extreme snow characteristics. The 1.5 load factor applied to the 1/50 snow loads is equivalent to a 1.0 factor applied to the actual 1/1000 snow loads, averaged across Canada.
As for the 1/50 annual probability Ss and Sr values, projected future changes, corresponding to an average global warming of of 2.5°C, have been applied to the 1/1000 annual probability Ss and Sr values using the same Minimax approach and future change factors (i.e., 1.05 for Yukon, Northwest Territories and Nunavut).
In the 2025 edition of the NBC, values of the winter average temperature, Tws, and winter average wind speed, Vws, are provided in Table C-2 for use in roof snow drift calculations. The Tws and Vws values are the average dry-bulb temperature and average wind speed (at a height of 10 m in open terrain) when the hourly dry-bulb temperature is lower than 0°C, respectively. These values are based on an ECCC analysis of hourly observations from 592 stations for the period 2014 to 2022. No projected future climate change factors have been applied.
Annual Total Precipitation
Total precipitation is the sum in millimetres of the measured depth of rainwater and the estimated or measured water equivalent of the snow (typically estimated as 0.1 of the measured depth of snow, since the average density of fresh snow is about 0.1 that of water).
The average annual total precipitation amounts in Table C-2 have been interpolated from an analysis of precipitation observations from 1379 stations for the 30-year period from 1961 to 1990.
Projected future changes to the annual average total precipitation values, corresponding to an average global warming of 2.5°C, have been applied. The values for all locations have increased, with an average increase of 12%.
Annual Rainfall
The total amount of rain that normally falls in one year is frequently used as a general indication of the wetness of a climate, and is therefore included in this Appendix. See also Moisture Index below.
Projected future changes to the annual average rainfall values, corresponding to an average global warming of 2.5°C, have been applied. The values for all locations have increased, with an average increase of 22%.
Rainfall Intensity
Roof drainage systems are designed to carry off rainwater from the most intense rainfall that is likely to occur. A certain amount of time is required for the rainwater to flow across and down the roof before it enters the gutter or drainage system. This results in the smoothing out of the most rapid changes in rainfall intensity. The drainage system, therefore, need only cope with the flow of rainwater produced by the average rainfall intensity over a period of a few minutes, which can be called the concentration time.
In Canada, it has been customary to use the 15-minute rainfall that will probably be exceeded on an average of once in 10 years. The concentration time for small roofs is much less than 15 minutes and hence the design intensity will be exceeded more frequently than with a 1/10 annual probability. once in 10 years. The safety factors in the NPC will probably reduce the frequency to a reasonable value and, in addition, the occasional failure of a roof drainage system will not be particularly serious in most cases.
The rainfall intensity values were updated for the 2010 edition of the Code using observations of annual maximum 15-minute rainfall amounts from 485 stations with 10 or more years of record, including data up to 2007 for some stations. Ten-year return period vValues with a 1/10 annual probability—the 15-minute rainfall having a probability of 1-in-10 of being exceeded in any year—were calculated by fitting the annual maximum values to the Gumbel extreme value distribution(4) using the method of moments. The updated values are compiled from the most recent short-duration rainfall intensity-duration-frequency (IDF) graphs and tables available from Environment and Climate Change Canada.
It is very difficult to estimate the pattern of rainfall intensity in mountainous areas, where precipitation is extremely variable and rainfall intensity can be much greater than in other types of areas. Many of the observations for these areas were taken at locations in valley bottoms or in extensive, fairly level areas.
Projected future changes to the rainfall intensity values, corresponding to an average global warming of 2.5°C, have been applied. The values for all locations have increased, with an average increase of about 29%.
One-Day Rainfall
If for any reason a roof drainage system becomes ineffective, the accumulation of rainwater may be great enough in some cases to cause a significant increase in the load on the roof. In previous editions of this information, it had been common practice to use the maximum one-day rainfall ever observed for estimating the additional load. Since the length of record for weather stations in Canada is quite variable, the maximum one-day rainfall amounts in previous editions often reflected the variable length of record at nearby stations as much as the climatology. As a result, the maximum values often differed greatly within relatively small areas where little difference should be expected. The current values have been standardized to represent the one-day rainfall amounts that have 1 chance in 50 of being exceeded in any one year or the 1-in-50-year return value one-day rainfalls.
The one-day rainfall values were updated using daily rainfall observations from more than 3500 stations with 10 years or more of record, including data up to 2008 for some stations. The 50-year return period values were calculated by fitting the annual maximum one-day rainfall observations to the Gumbel extreme value distribution using the method of moments.(4)
Rainfall frequency observations can vary considerably over time and space. This is especially true for mountainous areas, where elevation effects can be significant. In other areas, small-scale intense storms or local influences can produce significant spatial variability in the data. As a result, the analysis incorporates some spatial smoothing.
Projected future changes to the one-day rainfall values, corresponding to an average global warming of 2.5°C, have been applied. The values for all locations have increased, with an average increase of about 29%.
Determination of Moisture Index (MI)
The relationship between WI and DI to correctly define moisture loading on a wall is not known. The MI values provided in the Table are based on the root mean square values of WI and 1-DI, with those values equally weighted. This is illustrated in Figure C-1. The resultant MI values are sufficiently consistent with industry's understanding of climate severity with respect to moisture loading as to allow limits to be identified for the purpose of specifying where additional protection from precipitation is required.
Projected future values (based on fractional changes) of moisture index, corresponding to an average global warming of 2.5°C, are available from Gaur et al.(15) For locations where the moisture index is projected to increase (two thirds of the locations), the future value has been applied. For locations where the moisture index is projected to decrease, the current value has been retained.
Figure [C-1] C-1
Derivation of moisture index (MI) based on normalized values for wetting index (WI) and drying index (DI)
Derivation of moisture index (MI) based on normalized values for wetting index (WI) and drying index (DI)
Note to Figure C-1:
(1)MI equals the hypotenuse of the triangle defined by WIN and 1-DIN
Driving Rain Wind Pressure (DRWP)
The presence of rainwater on the face of a building, with or without wind, must be addressed in the design and construction of the building envelope so as to minimize the entry of water into the assembly. Wind pressure on the windward faces of a building will promote the flow of water through any open joints or cracks in the facade.
Driving rain wind pressure (DRWP) is the wind load that is coincident with rain, measured or calculated at a height of 10 m. The values provided in the Table represent the loads for which there is 1 chance in 5 of being reached or exceeded in any one year, or a probability of 20% within any one year. Approximate adjustments for height can be made using the values for Ce given in Sentence 4.1.7.3.(5) as a multiplier.
Because of inaccuracies in developing the DRWP values related to the averaging of extreme wind pressures, the actual heights of recording anemometers, and the use of estimated rather than measured rainfall values, the values are considered to be higher than actual loads.(8)(9) Thus the actual probability of reaching or exceeding the DRWP in a particular location is less than 20% per year and these values can be considered to be conservative.
DRWP can be used to determine the height to which wind will drive rainwater up enclosed vertical conduits. This provides a conservative estimate of the height needed for fins in window extrusions and end dams on flashings to control water ingress. This height can be calculated as:
height of water, mm = DRWP/10, Pa
Note that the pressure difference across the building envelope may be augmented by internal pressures induced in the building interior by the wind. These additional pressures can be estimated using the information provided in the Commentary entitled Wind Load and Effects of the "Structural Commentaries (User's Guide – NBC 2020: Part 4 of Division B)".
Projected future changes to the DRWP values, corresponding to an average global warming of 2.5°C, have been applied. The values for all locations have increased, with an average increase of 9%.
Wind Effects
All structures need to be designed to ensure that the main structural system and all secondary components, such as cladding and appurtenances, will withstand the pressures and suctions caused by the strongest wind likely to blow at that location in many years. Some flexible structures, such as tall buildings, slender towers and bridges, also need to be designed to minimize excessive wind-induced oscillations or vibrations.
At any time, the wind acting upon a structure can be treated as a mean or time-averaged component and as a gust or unsteady component. For a small structure, which is completely enveloped by wind gusts, it is only the peak gust velocity that needs to be considered. For a large structure, the wind gusts are not well correlated over its different parts and the effects of individual gusts become less significant. The "Structural Commentaries (User's Guide – NBC 2020: Part 4 of Division B)" evaluates the mean pressure acting on a structure, provides appropriate adjustments for building height and exposure and for the influence of the surrounding terrain and topography (including wind speed-up for hills), and then incorporates the effects of wind gusts by means of the gust factor, which varies according to the type of structure and the size of the area over which the pressure acts.
The wind speeds and corresponding velocity pressures used in the Code are regionally representative or reference values. The reference wind speeds are nominal one-hour averages of wind speeds representative of the 10 m height in flat open terrain corresponding to Exposure A or open terrain in the terminology of the "Structural Commentaries (User's Guide – NBC 2020: Part 4 of Division B)". The reference wind speeds and wind velocity pressures are based on long-term wind records observed at a large number of weather stations across Canada.
Reference wind velocity pressures in the 1961 to 2005 editions of the Code since 1961 were based mostly on records of hourly averaged wind speeds (i.e. the number of miles of wind passing an anemometer in an hour) from over 100 stations with 10 to 22 years of observations ending in the 1950s. The wind pressure values derived from these measurements represented true hourly wind pressures.
The reference wind velocity pressures were reviewed and updated for the 2010 edition of the Code. The primary data set used for the analysis comprised wind records compiled from about 135 stations with hourly averaged wind speeds and from 465 stations with aviation (one- or two-minute average) speeds or surface weather (ten-minute average) speeds observed once per hour at the top of the hour; the periods of record used ranged from 10 to 54 years. In addition, peak wind gust records from 400 stations with periods of record ranging from 10 to 43 years were used. Peak wind gusts (gust durations of approximately 3 to 7 seconds) were used to supplement the primary once-per-hour observations in the analysis.
Several steps were involved in updating the reference wind values. Where needed, speeds were adjusted to represent the standard anemometer height above ground of 10 m. The data from years when the anemometer at a station was installed on the top of a lighthouse or building were eliminated from the analysis since it is impractical to adjust for the effects of wind flow over the structure. (Most anemometers were moved to 10 m towers by the 1960s.) Wind speeds of the various observation types—hourly averaged, aviation, surface weather and peak wind gust—were adjusted to account for different measure durations to represent a one-hour averaging period and to account for differences in the surface roughness of flat open terrain at observing stations.
The annual maximum wind speed data was fitted to the Gumbel distribution using the method of moments(4) to calculate hourly wind speeds having the annual probability of occurrence of 1-in-10 and 1-in-50 (10-year and 50-year return periods). The values were plotted on maps, then analyzed and abstracted for the locations in Table C-2.
The wind velocity pressures, q, were calculated in Pascals using the following equation:
q = 1 2 ρ V 2
where ρ is an average air density for the windy months of the year and V is wind speed in metres per second. While air density depends on both air temperature and atmospheric pressure, the density of dry air at 0°C and standard atmospheric pressure of 1.2929 kg/m3 was used as an average value for the wind pressure calculations. As explained by Boyd(10), this value is within 10% of the monthly average air densities for most of Canada in the windy part of the year.
As a result of the updating procedure for the 2010 edition of the Code, the 1-in-50 reference wind velocity pressures remained unchanged for most of the locations listed in Table C-2; both increases and decreases were noted for the remaining locations. Many of the decreases resulted from the fact that anemometers at most of the stations used in the previous analysis were installed on lighthouses, airport hangers and other structures. Wind speeds on the tops of buildings are often much higher compared to those registered by a standard 10 m tower. Eliminating anemometer data recorded on the tops of buildings from the analysis resulted in lower values at several locations.
For the 2020 edition of the Code, the reference wind velocity pressures were updated to reflect the new data collected in the approximately 10 years since the previous update for the 2010 edition. Only data collected at stations with a period of record of at least 20 years were used in the analysis. As a result, the data set comprised wind records from 368 hourly and 222 daily peak wind gust stations with periods of record ranging from 20 to 65 years. The annual maximum wind speed data were fitted to the Gumbel distribution.
The 1-in-50 hourly wind speeds, after adjusting for roughness to represent open exposure, were mapped and compared to the NBC 2015 values for the locations in Table C-2. This updating procedure resulted in small changes to the 1-in-50 reference wind velocity pressures for 60 locations.
The 1-in-10 reference wind velocity pressures were updated using the same procedure, except that regional values of the coefficient of variation were used in the calculations instead of the national value used previously. This procedure resulted in small changes to the 1-in-10 reference wind velocity pressures for 322 locations, including many for which there was no change to the 1-in-50 reference wind velocity pressure.
Wind speeds that have a 1-in-n chance of being exceeded in any year, where n < 50, can be calculated from the wind speeds corresponding to the 1-in-10 and 1-in-50 return period values in Table C-2 using the following equation:
V 1 / n = 1 1 . 4565 V 1 / 50 + 0 . 4565 V 1 / 10 + V 1 / 50 V 1 / 10 1 . 1339 × 1 n 0 . 0339 1 n 1 1 / n
Table C-1 has been arranged to give pressures to the nearest one-hundredth of a kPa and their corresponding wind speeds. The value of q in kPa is assumed to be equal to 0.00064645 V2, where V is given in m/s.
Significant changes to wind loads are introduced in the 2025 edition of the NBC based on recent work reported by RWDI.(17)(18) As described above for snow loads, a “uniform risk” approach has been developed for wind loads. Since the 1.4 load factor applied to the 1/50 wind pressures is equivalent to a 1.0 factor applied to 1/500 wind pressures, averaged across Canada, the 1/500 wind pressures are now provided in Table C-2. These values were calculated from the NBC 2020 1/10 and 1/50 wind pressure values for each location using the equations above for q (as a function of wind speed and air density) and V1/n, the 1/n annual probability wind speed. The 1/500 wind pressures calculated in this way account for the regional statistical properties of the extreme wind events, a necessary characteristic for the uniform risk approach.
Explicitly expressing extreme wind events at the low annual exceedance probability of 1/500 (i.e., 0.002 or 0.2%) requires accounting for a physical characteristic of extreme winds, as explained below.
In the 2020 and previous editions of the Code, the extreme wind return levels were calculated using the annual maximum observed wind speeds from all wind events, regardless of their cause. There are two common causes of extreme winds in Canada. The most common cause is synoptic wind events corresponding to large mid-latitude low-pressure systems, generally with embedded weather fronts, that result in moderate to high wind speeds, often over extensive areas. Much of Canada is also prone to convective wind events, most commonly associated with thunderstorm and related events, the extremes of which have different statistical characteristics compared to synoptic wind events.
The RWDI project(17) involved separating the annual extremes of wind events by virtue of long-term daily observations of “day with thunderstorm” and of peak gust speed. The annual extremes of the convective and synoptic wind events were analyzed separately, and their respective extreme value frequency distributions were combined using the following equation:
1RT=111RS11RCMMF.7h_F4000[EM]Km]63?h5n*on:0):LK`GjMA_SZMVaV8k|=Ed`;`?FZMUaQ:kDmb]GN3o?_9dTRQGLS5PLA;c8Nm8?S`N;FoWbkN[mF:JcEO;ZmN[kFbMC[?E)USTamlGnN?^`nRn:5l)noaYm7jg7oeU9eZ)[kKI?;];PoC?CoUaMmQO0jXNd_D6W**V7(GQB:3V^fVF1S8Lb*CoQ=CQ2)2=|Vo0S2U*4=l9)d^EVLl*YcoNgdgWbf1lMKZjfVkB;9|_KbVScFHiGJC1^iNR76f:hg6gOlCU;lM0Q8_5[=PO?iEOU|GOEDQD*kmJWZUUYEJ]N_GdjfeI57ld=]eWlnk(VC^Xe55ol3S(M|o5b`QeXoGQ)Mlg5Q_)3Yo:7G;Sji?1mC34NX0f3?26BlCQ4W(HX0h3g66H??BcQf7jlYbn3bj7CWf0_[a4GejR;`OXb`7jLYRnk:L_QnV[PM=G0oCE)GfWo`N_SPa1ES:441Z_AffXC2D[U45kX174OY4QPoB6R0aNSYTWBh|R3a84e|_H`11F^cl698]:Y3C0bi8]XCC(a5J0dP1_(4gTSbj;FQlS=c5A7UV7Y=nO|20^4E(3H9U8ZXjG:KaF7[PZC;aWX0AZ)N:)Z*jPJTBER6Z*M9:CPY=V:DRZ*583aMQ9GP9Yf1JNPXcKg:C]a^*eD3`11J`PbYe13EAcP0Pd?agCLJjR=Zj:6G5U^Nn40LeCd9B2m*jdI5Beh||d1eD:^Ui8:E`gA]l=MOmHAT*WS8PA_;Eh6XKBl?|=?`ZSZDoZMS3^F]B|C(Ak`50Fd|^FbDWKJI5P(V^5B;HUSGPA8QNn1ZKe6TG(4af2Z_)8[6=LXjB=4_?;4?=6R5WlV);kba1[EmWH8l)g4?TjI|aJ(JKhf|^^3gg:U|8[kl_bl;KZ`aXYK^:=J:|^Z57DD[)D`7Dc3bbc96eZRF0b:glRFLA4]IE==6__a;23BB:n9FHMTeP)4WK3*8S)K17*QK8c^1BK?49cH=X30]4IBR;^8(_;1H8e8X3Xf3ZS4MaPJTc:UKHaE]NbPHI_S3R8*md2:|Yehk9C5CLPVm(7=b9U3B*7kVKDP9O4cDSI87hfh(JTKA1[3I3|LX3RWe=^C3H31QBk7h23D[*;GGoF6OY9JIZUWM=a`k8YY9^F;NZDa(g;^Y_13L`6b(i2bZD^RI^HI;VMg^)W[PPMle3QNhE4H`F7^UIlNJ][A6OWkn2]2WMI[kOn_gG3Tj`J?BY_LHEbF7V[LIZ_G]hJ^Bb6|XXKJnb|LLMZ;ni=;UOS6lD2)]GN[=N[EAJ82Ei9(HW`3dS0?TFEnfQio^g|6dbUPajMo?Yi]3:XW|Dm3jnEPAiLYfEil)_XNOEV]lo;;aF)4Bn;aoaHE=PRGQM?kP]NYDU*li2G^obGYd;jK8U2N_cP4BFOOSjF^LNBkGS[MJY7Yg]diTbG?b43NQ;1XF3M;gjhNh2bL;93RUXZ;c_;=JWMfI12niFJW)3RfMdJ3f=i:9oaNfiFO3kjoZaN(:T^dVae]cYOQjOYOWX4g8JKKWi`cU7J_5|4E;Ki(P_8gNKkeO^KjBHUhhVl;k=dVM5GgY_GKAI4heLBISn58KJLnoTiF8oA0[fVK7`jWI`J_Inf3oSLR6lKO02=adj7|Tb07)20mahjj_lJLM(GTMkE6?mYE?e_XFKO2WG24_h;70Y;n0.mmf
where RS is the annual exceedance probability of synoptic wind events, RC is annual exceedance probability of convective wind events, and RT is the annual exceedance probability of the combined convective and synoptic probability distributions. For thunderstorm-prone regions, the 1/500 wind speed calculated for the combined statistical results is generally higher than the 1/500 event calculated using the single annual maximum series of the commingled synoptic and convective wind events. Note that this effect is not significant for 1/50 events but needs to be accounted for with lower-probability events.
Based on a recent ECCC project using daily thunderstorm and peak gust speed observations, as described above, from 190 stations with at least 10 years of observations for the period from 1955 to 2022, a thunderstorm surcharge factor, TS, was developed to account for this characteristic of extreme wind events. From the correlation between the annual average number of thunderstorm days and the ratio of the 1/500 gust speed for combined data sets compared to commingled data sets, the following TS values (applied to wind pressure) were obtained: 1.1 for locations with more than 20 thunderstorm days per year, 1.05 for locations with 8 to 20 thunderstorm days per year, and 1.0 (i.e., no change) for locations with fewer than 8 thunderstorm days per year. The TS = 1.1 factor applies from southeastern British Columbia, across the southern Prairies, to southern Ontario and Quebec. The TS = 1.05 factor applies from the western British Columbia interior, across the northern portions of the Prairies, Ontario and Quebec, to Atlantic Canada, except Newfoundland and Labrador. The TS = 1.0 factor applies to the outer coasts of Canada and the North. These TS values have only been applied to the 1/500 wind pressure values.
Projected future changes, corresponding to an average global warming of 2.5°C, as recommended by RWDI,(18) have been applied to the 1/10, 1/50, and 1/500 wind pressure values in Table C-2. The projected future changes are all increases, by a factor of either 1.05 or 1.1.
Table [C-2] C-2
Climatic Design Data for Selected Locations in Canada
Province and Location Elev., m Design Temperature Degree-Days Below 18°C Degree-Days Below 15°C 15 Min. Rain, mm One Day Rain, 1/50, mm Ann. Rain, mm Moist. Index Ann. Tot. Ppn., mm Driving Rain Wind Pressures, Pa, 1/5 Snow Load, kPa, 1/50 Snow Load, kPa, 1/1000 Hourly Wind Pressures, kPa Winter Average
January July 2.5% Ss Sr Ss Sr 1/10 1/50 1/500 Temperature, °C Wind Speed, m/s
2.5% °C 1% °C HistoricalPROPOSED CHANGE Table C-2. Footnote (1) Future
Dry °C Wet °C Dry °C Wet °C
British Columbia
100 Mile House
1040 -30 -32 29 17 34 21 5030 4040 10 13 48 61 300 450 0.4 425 530 60 80 2.6 0.3 3.7 0.4 0.27 0.30 0.35 0.39 0.55 -7 2.8
Abbotsford
70 -8 -10 29 20 35 25 2860 2000 12 15 112 140 1525 1690 1.6 1600 1630 160 170 2 0.3 3.2 0.5 0.33 0.36 0.44 0.48 0.68 -3 3.7
Agassiz
15 -9 -11 31 21 37 26 2750 1900 8 10 128 162 1650 2100 1.7 1.8 1700 1750 160 180 2.4 0.7 3.8 1.1 0.35 0.39 0.47 0.52 0.77 -4 5.1
Alberni
12 -5 -8 31 19 37 24 3100 2220 10 12 144 178 1900 2130 2.0 2.2 2000 2140 220 240 2.6 0.4 4.2 0.6 0.24 0.26 0.32 0.35 0.5 -2 1
Ashcroft
305 -24 -27 34 20 39 24 3700 2790 10 13 37 47 250 380 0.3 300 370 80 110 1.7 0.1 2.5 0.2 0.29 0.32 0.38 0.42 0.61 -5 1.1
Bamfield
20 -2 -4 23 17 28 21 3080 2060 13 16 170 208 2870 3060 3.0 3.2 2890 3010 280 300 1 0.4 1.6 0.7 0.38 0.42 0.50 0.55 0.77 -2 2
Beatton River
840 -37 -39 26 18 31 22 6300 5230 15 19 64 81 330 430 0.5 450 540 80 90 3.3 0.1 4.6 0.1 0.23 0.25 0.30 0.33 0.47 -12 2.5
Bella Bella
25 -5 -7 23 18 28 22 3180 2150 13 16 145 180 2715 2990 2.8 3.4 2800 2910 350 380 2.6 0.8 4.2 1.3 0.40 0.44 0.50 0.55 0.73 -2 2.5
Bella Coola
40 -14 -18 27 19 33 24 3560 2660 10 13 140 183 1500 2240 1.9 2.3 1700 1810 350 420 4.5 0.8 7 1.2 0.29 0.32 0.39 0.43 0.61 -3 2.1
Burns Lake
755 -31 -34 26 17 32 22 5450 4430 12 15 54 69 300 460 0.6 450 550 100 120 3.4 0.2 4.8 0.3 0.29 0.32 0.39 0.43 0.64 -8 1
Cache Creek
455 -24 -27 34 20 39 24 3700 2790 10 13 37 47 250 370 0.3 300 380 80 110 1.7 0.2 2.5 0.3 0.29 0.32 0.39 0.43 0.64 -5 1.1
Campbell River
20 -5 -7 26 18 32 23 3000 2130 10 13 116 145 1500 1800 1.6 1.7 1600 1740 260 280 2.8 0.4 4.5 0.7 0.41 0.45 0.48 0.53 0.65 -3 2
Carmi
845 -24 -26 31 19 36 23 4750 3770 10 13 64 81 325 490 0.4 0.5 550 660 60 80 3.6 0.2 5.2 0.3 0.29 0.30 0.38 0.40 0.58 -4 2.5
Castlegar
430 -18 -20 32 20 37 24 3580 2680 10 13 54 69 560 820 0.6 0.8 700 780 60 70 4.2 0.1 6 0.1 0.26 0.27 0.34 0.36 0.52 -4 2
Chetwynd
605 -35 -38 27 18 33 22 5500 4480 15 19 70 88 400 520 0.6 625 740 60 70 2.4 0.2 3.5 0.3 0.30 0.33 0.40 0.44 0.65 -9 2.2
Chilliwack
10 -9 -11 30 20 36 25 2780 1920 8 10 139 175 1625 1970 1.7 1.8 1700 1750 160 180 2.2 0.3 3.5 0.5 0.35 0.39 0.47 0.52 0.74 -4 4.5
Comox
15 -7 -9 27 18 33 23 2930 2220 10 13 106 133 1175 1360 1.3 1.4 1200 1290 260 290 2.4 0.4 3.8 0.6 0.41 0.45 0.48 0.53 0.65 -2 2.1
Courtenay
10 -7 -9 28 18 34 23 2930 2220 10 13 106 133 1400 1630 1.5 1.6 1450 1560 260 290 2.4 0.4 3.8 0.6 0.41 0.45 0.48 0.53 0.65 -2 2.1
Cranbrook
910 -26 -28 32 18 37 22 4400 3450 12 15 59 75 275 380 0.3 400 440 100 120 3 0.2 4.4 0.3 0.25 0.26 0.33 0.35 0.53 -7 1.6
Crescent Valley
585 -18 -20 31 20 36 24 3650 2740 10 13 54 69 675 990 0.8 1.0 850 940 80 100 4.2 0.1 6 0.1 0.25 0.26 0.33 0.35 0.51 -4 2.2
Crofton
5 -4 -6 28 19 34 24 2880 2020 8 10 86 106 925 1000 1.1 1.2 950 990 160 180 1.8 0.2 2.9 0.3 0.32 0.35 0.40 0.44 0.58 -2 1
Dawson Creek
665 -38 -40 27 18 32 22 5900 4860 18 23 75 95 325 420 0.5 475 570 100 110 2.5 0.2 3.6 0.3 0.30 0.33 0.40 0.44 0.65 -11 2.2
Dease Lake
800 -37 -40 24 15 29 19 6730 5630 10 13 45 58 265 390 0.6 425 490 50 60 2.8 0.1 3.9 0.1 0.23 0.25 0.30 0.33 0.45 -11 1.9
Dog Creek
450 -28 -30 29 17 34 21 4800 3820 10 12 48 60 275 400 0.4 375 480 100 140 1.8 0.2 2.7 0.3 0.27 0.30 0.35 0.39 0.55 -7 2.9
Duncan
10 -6 -8 28 19 33 24 2980 2110 8 10 103 126 1000 1100 1.1 1.2 1050 1120 180 200 1.8 0.4 2.9 0.6 0.31 0.34 0.39 0.43 0.57 -2 1
Elko
1065 -28 -31 30 19 35 23 4600 3630 13 17 64 81 440 590 0.5 650 710 100 120 3.6 0.2 5.3 0.3 0.30 0.32 0.40 0.42 0.62 -8 2
Fernie
1010 -27 -30 30 19 35 23 4750 3770 13 16 118 150 860 1140 0.9 1175 1290 100 120 4.5 0.2 6.5 0.3 0.30 0.32 0.40 0.42 0.65 -8 2.2
Fort Nelson
465 -39 -42 28 18 32 22 6710 5740 15 19 70 90 325 430 0.6 450 550 80 90 2.4 0.1 3.3 0.1 0.23 0.25 0.30 0.33 0.47 -13 1.8
Fort St. John
685 -35 -37 26 18 31 22 5750 4710 15 19 72 91 320 420 0.5 475 580 100 110 2.8 0.1 4.1 0.1 0.29 0.32 0.39 0.43 0.64 -11 3.9
Glacier
1145 -27 -30 27 17 33 22 5800 4760 10 13 70 91 625 900 0.8 0.9 1500 1620 80 100 9.4 0.2 12.3 0.3 0.24 0.25 0.32 0.34 0.52 -7 1.7
Golden
790 -27 -30 30 17 36 22 4750 3770 10 13 55 71 325 450 0.6 500 540 100 130 3.7 0.2 5 0.3 0.26 0.27 0.35 0.37 0.58 -7 1.4
Gold River
120 -8 -11 31 18 37 23 3230 2350 13 16 200 248 2730 3100 2.8 3.1 2850 3030 250 270 2.8 0.6 4.7 1 0.24 0.26 0.32 0.35 0.5 -2 1.8
Grand Forks
565 -19 -22 34 20 39 24 3820 2900 10 13 48 61 390 570 0.5 0.6 475 560 80 90 2.8 0.1 4 0.1 0.30 0.32 0.40 0.42 0.62 -4 2
Greenwood
745 -20 -23 34 20 39 24 4100 3160 10 13 64 81 430 640 0.5 0.6 550 650 80 100 3.6 0.1 5.2 0.1 0.30 0.32 0.40 0.42 0.62 -4 2
Hope
40 -13 -15 31 20 37 25 2820 2130 8 10 139 177 1825 2510 1.9 2.0 1900 1980 140 160 2.8 0.7 4.4 1.1 0.47 0.52 0.63 0.69 1.03 -4 6
Jordan River
20 -1 -3 22 17 27 22 2900 1900 12 15 170 208 2300 2520 2.4 2.6 2370 2510 250 270 1.2 0.4 2 0.7 0.44 0.48 0.55 0.61 0.79 -2 2
Kamloops
355 -23 -25 34 20 38 24 3450 2670 13 17 42 53 225 340 0.2 275 340 80 100 1.8 0.2 2.6 0.3 0.30 0.33 0.40 0.44 0.65 -6 2.9
Kaslo
545 -17 -20 30 19 35 23 3830 2910 10 13 55 70 660 950 0.8 0.9 850 930 80 100 2.8 0.1 4 0.1 0.23 0.24 0.31 0.33 0.51 -5 1.8
Kelowna
350 -17 -20 33 20 38 24 3400 2510 12 15 43 54 260 390 0.3 325 390 80 120 1.7 0.1 2.5 0.2 0.30 0.32 0.40 0.42 0.62 -5 1.6
Kimberley
1090 -25 -27 31 18 36 22 4650 3680 12 15 59 75 350 480 0.4 500 550 100 130 3 0.2 4.3 0.3 0.25 0.26 0.33 0.35 0.53 -7 1.6
Kitimat Plant
15 -16 -18 25 16 31 21 3750 2830 13 17 193 250 2100 2900 2.2 2.7 2500 2680 220 260 5.5 0.8 8.4 1.2 0.36 0.40 0.48 0.53 0.75 -5 5
Kitimat Townsite
130 -16 -18 24 16 30 21 3900 2980 13 17 171 221 1900 2620 2.0 2.4 2300 2460 220 260 6.5 0.8 9.8 1.2 0.36 0.40 0.48 0.53 0.75 -5 5
Ladysmith
80 -7 -9 27 19 32 24 2920 2130 8 10 97 119 1075 1180 1.2 1.3 1160 1220 180 200 2.4 0.4 3.9 0.7 0.32 0.35 0.40 0.44 0.58 -2 1.5
Langford
80 -4 -6 27 19 33 23 2750 1770 9 11 135 166 1095 1250 1.2 1.3 1125 1240 220 250 1.8 0.3 3 0.5 0.32 0.35 0.40 0.44 0.58 -2 3.3
Lillooet
245 -21 -23 34 20 39 24 3400 2610 10 13 70 89 300 470 0.3 350 420 100 150 2.1 0.1 3.2 0.2 0.33 0.36 0.44 0.48 0.72 -5 2
Lytton
325 -17 -20 35 20 40 24 3300 2410 10 13 70 89 330 510 0.3 425 490 80 110 2.8 0.3 4.3 0.5 0.32 0.35 0.43 0.47 0.7 -5 1.7
Mackenzie
765 -34 -38 27 17 33 21 5550 4530 10 13 50 64 350 490 0.5 650 720 60 70 5.1 0.2 7.1 0.3 0.25 0.28 0.32 0.35 0.5 -8 1.6
Masset
10 -5 -7 17 15 21 18 3700 2600 13 16 80 98 1350 1510 1.5 1.6 1400 1530 400 430 1.8 0.4 2.9 0.6 0.50 0.55 0.61 0.67 0.86 -2 1.7
McBride
730 -29 -32 29 18 36 23 4980 3990 13 17 54 69 475 670 0.6 650 700 60 70 4.3 0.2 6.2 0.3 0.27 0.30 0.35 0.39 0.58 -9 2
McLeod Lake
695 -35 -37 27 17 33 21 5450 4430 10 13 50 64 350 490 0.5 650 720 60 70 4.1 0.2 5.7 0.3 0.25 0.28 0.32 0.35 0.5 -8 2
Merritt
570 -24 -27 34 20 39 24 3900 2980 8 10 54 68 240 370 0.2 310 370 80 110 1.8 0.3 2.7 0.4 0.33 0.36 0.44 0.48 0.72 -6 1.1
Mission City
45 -9 -11 30 20 36 25 2850 1990 13 16 123 154 1650 1850 1.7 1700 1730 160 180 2.4 0.3 3.8 0.5 0.32 0.35 0.43 0.47 0.67 -3 4
Montrose
615 -16 -18 32 20 37 24 3600 2690 10 13 54 69 480 690 0.6 0.8 700 780 60 70 4.1 0.1 5.8 0.1 0.26 0.27 0.35 0.37 0.55 -4 1.5
Nakusp
445 -20 -22 31 20 36 24 3560 2660 10 13 60 77 650 940 0.8 1.0 850 940 60 80 4.4 0.1 6.2 0.1 0.25 0.26 0.33 0.35 0.51 -4 1.2
Nanaimo
15 -6 -8 27 19 33 24 2920 2130 10 12 91 113 1000 1110 1.1 1.2 1050 1120 200 220 2.1 0.4 3.5 0.7 0.38 0.42 0.48 0.53 0.7 -2 3
Nelson
600 -18 -20 31 20 36 24 3500 2600 10 13 59 75 460 670 0.6 0.8 700 770 60 70 4.2 0.1 5.9 0.1 0.25 0.26 0.33 0.35 0.51 -4 2.3
Ocean Falls
10 -10 -12 23 17 28 22 3400 2510 13 16 260 327 4150 4830 4.2 5.4 4300 4460 350 380 3.9 0.8 6.2 1.3 0.44 0.48 0.59 0.65 0.92 -3 2.1
Osoyoos
285 -14 -17 35 21 40 25 3100 2220 10 13 48 61 275 420 0.3 310 380 60 80 1.1 0.1 1.6 0.2 0.30 0.32 0.40 0.42 0.62 -4 1.8
Parksville
40 -6 -8 26 19 32 24 2990 2320 10 12 91 113 1200 1350 1.3 1.4 1250 1340 200 220 2 0.4 3.2 0.7 0.40 0.44 0.48 0.53 0.66 -2 2
Penticton
350 -15 -17 33 20 38 24 3350 2460 10 13 48 61 275 420 0.3 300 370 60 90 1.3 0.1 1.9 0.2 0.30 0.32 0.40 0.42 0.62 -4 3.4
Port Alberni
15 -5 -8 31 19 37 24 3100 2220 10 12 161 199 1900 2120 2.0 2.1 2000 2140 240 260 2.6 0.4 4.2 0.6 0.24 0.26 0.32 0.35 0.5 -2 1
Port Alice
25 -3 -6 26 17 31 21 3010 2000 13 16 200 244 3300 3540 3.4 3.6 3340 3500 220 230 1.1 0.4 1.8 0.7 0.24 0.26 0.32 0.35 0.5 -2 1.5
Port Hardy
5 -5 -7 20 16 25 20 3440 2370 13 16 150 184 1775 1950 1.9 2.0 1850 1930 220 240 0.9 0.4 1.5 0.7 0.36 0.40 0.48 0.53 0.75 -2 2.8
Port McNeill
5 -5 -7 22 17 27 21 3410 2350 13 16 128 157 1750 1930 1.9 2.0 1850 1950 260 280 1.1 0.4 1.8 0.7 0.36 0.40 0.48 0.53 0.75 -2 2.8
Port Renfrew
20 -3 -5 24 17 29 21 2900 1900 13 16 200 244 3600 3860 3.6 3.9 3675 3860 270 290 1.1 0.4 1.8 0.7 0.42 0.46 0.52 0.57 0.75 -2 2.5
Powell River
10 -7 -9 26 18 32 23 3100 2220 10 13 80 101 1150 1360 1.3 1.5 1200 1270 220 250 1.7 0.4 2.7 0.6 0.39 0.43 0.48 0.53 0.68 -2 1.2
Prince George
580 -32 -36 28 18 34 22 4720 3750 15 19 54 68 425 600 0.6 0.7 600 710 80 100 3.4 0.2 4.8 0.3 0.28 0.31 0.37 0.41 0.63 -8 3
Prince Rupert
20 -13 -15 19 15 24 19 3900 2770 13 16 160 201 2750 3160 2.8 3.1 2900 3070 240 260 1.9 0.4 2.9 0.6 0.43 0.47 0.54 0.59 0.78 -3 2.5
Princeton
655 -24 -29 33 19 39 24 4250 3300 10 13 43 54 235 370 0.4 350 400 80 110 2.9 0.6 4.3 0.9 0.27 0.30 0.36 0.40 0.59 -6 1
Qualicum Beach
10 -7 -9 27 19 33 24 2990 2320 10 12 96 119 1200 1350 1.3 1.4 1250 1340 200 220 2 0.4 3.3 0.7 0.41 0.45 0.48 0.53 0.65 -2 2
Queen Charlotte City
35 -6 -8 21 16 25 20 3520 2440 13 16 110 135 1300 1430 1.5 1.6 1350 1460 360 390 1.8 0.4 2.9 0.6 0.50 0.55 0.61 0.67 0.86 -2 2
Quesnel
475 -31 -33 30 17 36 21 4650 3680 10 13 50 63 380 550 0.5 0.6 525 630 80 100 3 0.1 4.4 0.2 0.24 0.26 0.31 0.34 0.51 -7 1.8
Revelstoke
440 -20 -23 31 19 36 23 4000 3070 13 17 55 71 625 910 0.8 0.9 950 1030 80 100 7.2 0.1 9.9 0.1 0.24 0.25 0.32 0.34 0.52 -5 1.7
Salmon Arm
425 -19 -24 33 21 38 25 3650 2740 13 17 48 61 400 580 0.5 0.6 525 610 80 100 3.5 0.1 4.9 0.1 0.29 0.30 0.39 0.41 0.61 -5 1.1
Sandspit
5 -4 -6 18 15 22 19 3450 2380 13 16 86 105 1300 1430 1.5 1.6 1350 1460 500 540 1.8 0.4 2.9 0.7 0.59 0.65 0.72 0.79 1.01 -2 6.3
Sechelt
25 -6 -8 27 20 33 25 2680 1830 10 13 75 94 1140 1310 1.3 1.5 1200 1250 160 180 1.8 0.4 3 0.7 0.38 0.42 0.48 0.53 0.7 -2 1.4
Sidney
10 -4 -6 26 18 32 22 2850 1860 8 10 96 118 825 900 1.0 1.1 850 900 160 180 1.1 0.2 1.8 0.3 0.34 0.37 0.42 0.46 0.61 -2 3.3
Smithers
500 -29 -31 26 17 32 22 5040 4050 13 17 60 77 325 510 0.6 500 580 120 150 3.5 0.2 4.9 0.3 0.30 0.33 0.40 0.44 0.62 -7 1.7
Smith River
660 -45 -47 26 17 30 21 7100 5980 10 13 64 82 300 400 0.6 500 590 40 2.8 0.1 3.9 0.1 0.24 0.26 0.30 0.33 0.46 -14 1.9
Sooke
20 -1 -3 21 16 27 20 2900 1900 9 11 130 159 1250 1410 1.4 1.5 1280 1390 220 250 1.3 0.3 2.2 0.5 0.38 0.42 0.48 0.53 0.7 -2 2
Squamish
5 -9 -11 29 20 35 25 2950 2080 10 13 140 182 2050 2610 2.1 2.6 2200 2290 160 190 2.8 0.7 4.3 1.1 0.38 0.42 0.50 0.55 0.77 -3 3
Stewart
10 -17 -20 25 16 31 21 4350 3400 13 17 135 181 1300 2010 1.5 1.7 1900 2090 180 210 7.9 0.8 11.4 1.2 0.27 0.30 0.36 0.40 0.56 -7 2
Tahsis
25 -4 -6 26 18 32 23 3150 2120 13 16 200 246 3845 4250 3.9 4.3 3900 4110 300 330 1.1 0.4 1.8 0.7 0.26 0.29 0.34 0.37 0.52 -2 1
Taylor
515 -35 -37 26 18 31 22 5720 4690 15 19 72 91 320 420 0.5 450 540 100 110 2.3 0.1 3.3 0.2 0.30 0.33 0.40 0.44 0.65 -11 3.9
Terrace
60 -19 -21 27 17 33 22 4150 3210 13 17 120 156 950 1420 1.1 1.2 1150 1250 200 240 5.4 0.6 8 0.9 0.27 0.30 0.36 0.40 0.56 -5 5.2
Tofino
10 -2 -4 20 16 25 20 3150 2120 13 16 193 237 3275 3490 3.4 3.7 3300 3450 300 320 1.1 0.4 1.8 0.7 0.51 0.56 0.68 0.75 1.06 -2 1.5
Trail
440 -14 -17 33 20 38 24 3600 2690 10 13 54 69 580 830 0.7 0.9 700 790 60 70 4.1 0.1 5.7 0.1 0.26 0.27 0.35 0.37 0.55 -4 1.5
Ucluelet
5 -2 -4 18 16 23 20 3120 2100 13 16 180 221 3175 3370 3.3 3.6 3200 3330 280 300 1 0.4 1.7 0.7 0.51 0.56 0.68 0.75 1.06 -2 1.5
Vancouver Region
Burnaby (Simon Fraser Univ.)
330 -7 -9 25 17 31 22 3100 2220 10 13 150 189 1850 2120 1.9 2.4 1950 2020 160 180 2.9 0.7 4.7 1.1 0.35 0.39 0.47 0.52 0.74 -3 2.9
Cloverdale
10 -8 -10 29 20 35 25 2700 1850 10 12 112 139 1350 1470 1.4 1400 1440 160 170 2.5 0.2 4 0.3 0.33 0.36 0.44 0.48 0.68 -3 1.7
Haney
10 -9 -11 30 20 36 25 2840 1980 10 13 134 168 1800 2030 1.9 2.0 1950 2000 160 180 2.4 0.2 3.9 0.3 0.33 0.36 0.44 0.48 0.68 -3 1.7
Ladner
3 -6 -8 27 19 33 24 2600 1750 10 12 80 99 1000 1080 1.1 1.4 1050 1090 160 170 1.3 0.2 2.1 0.3 0.37 0.41 0.46 0.51 0.66 -3 1.7
Langley
15 -8 -10 29 20 35 25 2700 1850 10 12 112 139 1450 1590 1.5 1500 1540 160 170 2.4 0.2 3.9 0.3 0.33 0.36 0.44 0.48 0.68 -3 1.7
New Westminster
10 -8 -10 29 19 35 24 2800 1940 10 12 134 167 1500 1680 1.6 2.0 1575 1630 160 180 2.3 0.2 3.7 0.3 0.33 0.36 0.44 0.48 0.68 -3 1.7
North Vancouver
135 -7 -9 26 19 32 24 2910 2050 12 15 150 188 2000 2250 2.1 2.6 2100 2170 160 180 3 0.3 4.7 0.5 0.34 0.37 0.45 0.50 0.69 -3 1
Richmond
5 -7 -9 27 19 33 24 2800 1940 10 12 86 107 1070 1170 1.2 1.5 1100 1140 160 180 1.5 0.2 2.4 0.3 0.36 0.40 0.45 0.50 0.65 -3 2.5
Surrey (88 Ave & 156 St.)
90 -8 -10 29 20 35 25 2750 1900 10 12 128 159 1500 1640 1.6 1575 1620 160 170 2.4 0.3 3.8 0.5 0.33 0.36 0.44 0.48 0.68 -3 1.7
Vancouver (City Hall)
40 -7 -9 28 20 34 25 2825 1970 10 12 112 140 1325 1470 1.4 1.7 1400 1450 160 180 1.8 0.2 2.9 0.3 0.34 0.37 0.45 0.50 0.69 -3 2.5
Vancouver (Granville St. & 41st Ave)
120 -6 -8 28 20 34 25 2925 2060 10 12 107 133 1325 1460 1.4 1.7 1400 1450 160 180 1.9 0.3 3 0.5 0.36 0.40 0.45 0.50 0.65 -3 2.5
West Vancouver
45 -7 -9 28 19 34 24 2950 2080 12 15 150 188 1600 1800 1.7 2.1 1700 1760 160 180 2.4 0.2 3.8 0.3 0.36 0.40 0.48 0.53 0.75 -3 2
Vernon
405 -20 -23 33 20 38 24 3600 2690 13 17 43 55 350 510 0.4 0.5 400 480 80 110 2.2 0.1 3.2 0.1 0.30 0.32 0.40 0.42 0.62 -5 1.5
Victoria Region
Victoria
10 -4 -6 24 17 30 21 2650 1730 8 10 91 112 800 910 1.0 1.1 825 910 220 250 1.1 0.2 1.8 0.3 0.46 0.51 0.57 0.63 0.81 -2 4.7
Victoria (Gonzales Hts)
65 -4 -6 24 17 30 21 2700 1690 9 11 91 112 600 680 0.8 0.9 625 690 220 250 1.5 0.3 2.5 0.5 0.46 0.51 0.57 0.63 0.81 -2 4.7
Victoria (Mt Tolmie)
125 -6 -8 24 16 30 20 2700 1730 9 11 91 112 775 860 1.0 1.1 800 860 220 250 2.1 0.3 3.5 0.5 0.46 0.48 0.57 0.60 0.78 -2 4
Whistler
665 -17 -20 30 20 36 25 4180 3240 10 13 85 112 845 1330 1.0 1.2 1215 1300 160 200 9.5 0.9 13.9 1.3 0.24 0.26 0.32 0.35 0.5 -4 1
White Rock
30 -5 -7 25 20 31 25 2620 1770 10 12 80 99 1065 1160 1.2 1100 1140 160 170 2 0.2 3.3 0.3 0.33 0.36 0.44 0.48 0.68 -3 1.7
Williams Lake
615 -30 -33 29 17 34 21 4400 3450 10 13 48 61 350 520 0.5 0.6 425 540 80 100 2.4 0.2 3.6 0.3 0.27 0.30 0.35 0.39 0.58 -7 2.9
Youbou
200 -5 -8 31 19 36 24 3050 2180 10 12 161 198 2000 2190 2.1 2.2 2100 2220 200 220 3.5 0.7 5.6 1.1 0.26 0.29 0.32 0.35 0.45 -2 1
Alberta
Athabasca
515 -35 -38 27 19 32 23 6000 5000 18 23 86 109 370 440 0.6 480 550 80 1.5 0.1 2.1 0.1 0.27 0.28 0.36 0.38 0.59 -10 2.4
Banff
1400 -31 -33 27 16 33 20 5500 4520 18 23 65 82 300 370 0.6 500 550 120 140 3.3 0.1 4.8 0.1 0.26 0.27 0.32 0.34 0.47 -8 2.3
Barrhead
645 -33 -36 27 19 32 23 5740 4750 20 25 86 109 375 450 0.6 475 550 100 1.7 0.1 2.5 0.2 0.35 0.37 0.44 0.46 0.67 -11 2
Beaverlodge
730 -36 -39 28 18 33 22 5700 4710 20 25 86 109 315 410 0.5 470 560 100 110 2.4 0.1 3.5 0.2 0.27 0.28 0.36 0.38 0.56 -10 2.1
Brooks
760 -32 -34 32 20 37 24 4880 3940 18 23 86 108 260 320 0.3 340 400 220 230 1.2 0.1 1.8 0.2 0.35 0.37 0.44 0.46 0.67 -10 3.8
Calgary
1045 -30 -32 28 17 34 21 5000 4050 23 29 103 129 325 390 0.4 425 480 220 240 1.1 0.1 1.6 0.2 0.38 0.40 0.48 0.50 0.74 -9 3.4
Campsie
660 -33 -36 27 19 32 23 5750 4760 20 25 86 109 375 450 0.6 475 550 100 1.7 0.1 2.5 0.2 0.33 0.35 0.44 0.46 0.72 -11 1.8
Camrose
740 -33 -35 29 19 34 23 5500 4520 20 25 86 109 355 420 0.5 470 540 160 2 0.1 2.9 0.1 0.31 0.33 0.39 0.41 0.6 -10 2.9
Canmore
1320 -31 -33 28 17 34 21 5400 4430 18 23 86 108 325 390 0.6 500 560 120 140 3.2 0.1 4.6 0.1 0.30 0.32 0.37 0.39 0.55 -8 2.3
Cardston
1130 -29 -32 30 19 35 23 4700 3770 20 25 108 136 340 410 0.4 550 630 140 150 1.5 0.1 2.2 0.2 0.58 0.61 0.72 0.76 1.04 -9 4.7
Claresholm
1030 -30 -32 30 18 35 22 4680 3750 15 19 97 122 310 370 0.4 440 510 200 210 1.3 0.1 1.9 0.2 0.46 0.48 0.58 0.61 0.89 -9 3.8
Cold Lake
540 -35 -38 28 19 33 23 5860 4860 18 23 81 104 320 380 0.5 430 480 140 1.7 0.1 2.5 0.1 0.29 0.30 0.38 0.40 0.61 -11 2.8
Coleman
1320 -31 -34 29 18 34 22 5210 4250 15 19 86 108 400 500 0.5 550 610 120 140 2.7 0.3 4 0.4 0.50 0.53 0.63 0.66 0.97 -8 2.7
Coronation
790 -32 -34 30 19 36 23 5640 4660 20 25 92 117 300 360 0.5 400 460 200 220 1.9 0.1 2.8 0.2 0.30 0.32 0.37 0.39 0.55 -10 4.3
Cowley
1175 -29 -32 29 18 34 22 4810 3870 15 19 92 116 310 380 0.4 525 600 140 150 1.6 0.1 2.3 0.2 0.81 0.85 1.01 1.06 1.47 -9 4
Drumheller
685 -32 -34 30 18 36 22 5050 4100 20 25 86 109 300 360 0.4 375 430 220 230 1.2 0.1 1.7 0.1 0.35 0.37 0.44 0.46 0.67 -10 2
Edmonton
645 -30 -33 28 19 34 23 5120 4160 23 29 97 123 360 430 0.5 460 520 160 170 1.7 0.1 2.5 0.2 0.36 0.38 0.45 0.47 0.68 -10 3
Edson
920 -34 -37 27 18 32 22 5750 4760 18 22 81 101 450 550 0.6 570 660 100 2.1 0.1 3 0.1 0.37 0.39 0.46 0.48 0.69 -9 2.2
Embarras Portage
220 -41 -43 28 19 32 23 7100 6040 12 16 81 105 250 310 0.6 390 450 80 2.2 0.1 3 0.1 0.28 0.29 0.37 0.39 0.57 -14 2.9
Fairview
670 -37 -40 27 18 32 22 5840 4850 15 19 86 109 330 420 0.5 450 530 100 110 2.4 0.1 3.5 0.2 0.26 0.27 0.35 0.37 0.55 -11 2.8
Fort MacLeod
945 -30 -32 31 19 36 23 4600 3670 16 20 97 122 300 360 0.4 425 490 180 190 1.2 0.1 1.8 0.2 0.54 0.57 0.68 0.71 0.99 -9 3.8
Fort McMurray
255 -38 -40 28 19 33 23 6250 5230 13 17 86 111 340 410 0.5 460 520 60 1.5 0.1 2.1 0.1 0.28 0.29 0.35 0.37 0.53 -12 3.2
Fort Saskatchewan
610 -32 -35 28 19 34 23 5420 4450 20 25 86 109 350 410 0.5 425 480 140 150 1.6 0.1 2.3 0.1 0.34 0.36 0.43 0.45 0.66 -10 2
Fort Vermilion
270 -41 -43 28 18 32 22 6700 5660 13 17 70 90 250 310 0.5 380 440 60 70 2.1 0.1 3 0.1 0.23 0.24 0.30 0.32 0.45 -14 3.1
Grande Prairie
650 -36 -39 27 18 32 22 5790 4800 20 25 86 109 315 400 0.5 450 540 120 2.2 0.1 3.2 0.2 0.32 0.34 0.43 0.45 0.7 -11 2.9
Habay
335 -41 -43 28 18 32 22 6750 5710 13 17 70 90 275 350 0.5 425 500 60 70 2.4 0.1 3.4 0.1 0.23 0.24 0.30 0.32 0.45 -14 2
Hardisty
615 -33 -36 30 19 36 23 5640 4660 20 26 81 104 325 390 0.5 425 480 140 150 1.7 0.1 2.5 0.2 0.29 0.30 0.36 0.38 0.54 -10 4
High River
1040 -31 -32 28 17 33 21 4900 3960 18 23 97 122 300 360 0.4 425 480 200 210 1.3 0.1 1.9 0.1 0.52 0.55 0.65 0.68 0.99 -9 2.8
Hinton
990 -34 -38 27 17 33 21 5500 4520 13 16 81 101 375 460 0.6 500 580 100 110 2.6 0.1 3.7 0.1 0.37 0.39 0.46 0.48 0.69 -9 2
Jasper
1060 -31 -34 28 17 34 22 5300 4330 12 15 76 96 300 390 0.5 400 450 80 100 3 0.1 4.3 0.1 0.26 0.27 0.32 0.34 0.47 -9 1.7
Keg River
420 -40 -42 28 18 32 22 6520 5490 13 17 70 89 310 390 0.5 450 530 80 90 2.4 0.1 3.5 0.1 0.23 0.24 0.30 0.32 0.45 -13 3
Lac La Biche
560 -35 -38 28 19 33 23 6100 5090 15 19 86 109 375 440 0.6 475 540 80 1.6 0.1 2.3 0.1 0.27 0.28 0.36 0.38 0.59 -11 2.4
Lacombe
855 -33 -36 28 19 34 23 5500 4520 23 29 92 116 350 420 0.5 450 520 180 190 1.9 0.1 2.8 0.1 0.32 0.34 0.40 0.42 0.61 -10 2.3
Lethbridge
910 -30 -32 31 19 36 23 4500 3580 20 25 97 122 250 310 0.3 390 450 200 210 1.2 0.1 1.8 0.2 0.53 0.56 0.66 0.69 0.96 -9 4
Manning
465 -39 -41 27 18 32 22 6300 5280 13 16 76 96 280 350 0.5 390 460 80 90 2.3 0.1 3.3 0.2 0.23 0.24 0.30 0.32 0.45 -13 2.8
Medicine Hat
705 -31 -34 32 19 37 23 4540 3610 23 29 92 116 250 300 0.3 325 370 220 230 1.1 0.1 1.6 0.2 0.38 0.40 0.48 0.50 0.71 -9 3.6
Peace River
330 -37 -40 27 18 32 22 6050 5040 15 19 81 103 300 380 0.5 390 460 100 110 2.2 0.1 3.2 0.2 0.24 0.25 0.32 0.34 0.5 -11 3.5
Pincher Creek
1130 -29 -32 29 18 34 22 4740 3800 16 20 103 130 325 400 0.4 575 650 140 150 1.5 0.1 2.2 0.2 0.77 0.81 0.96 1.01 1.39 -9 4.6
Ranfurly
670 -34 -37 29 19 34 23 5700 4710 18 23 92 118 325 380 0.5 420 480 100 1.9 0.1 2.7 0.1 0.29 0.30 0.36 0.38 0.54 -10 3.6
Red Deer
855 -32 -35 28 19 34 23 5550 4570 20 25 97 122 375 450 0.5 475 550 200 210 1.8 0.1 2.6 0.1 0.32 0.34 0.40 0.42 0.61 -10 2.8
Rocky Mountain House
985 -32 -34 27 18 33 22 5640 4660 20 25 92 115 425 510 0.6 550 630 120 130 1.9 0.1 2.7 0.1 0.29 0.30 0.36 0.38 0.54 -10 1.9
Slave Lake
590 -35 -38 26 19 31 23 5850 4850 15 19 81 102 380 450 0.6 500 570 80 1.9 0.1 2.8 0.2 0.28 0.29 0.37 0.39 0.6 -11 3.5
Stettler
820 -32 -34 30 19 36 23 5300 4330 20 25 97 123 370 440 0.5 450 520 200 210 1.9 0.1 2.7 0.1 0.29 0.30 0.36 0.38 0.54 -10 4.2
Stony Plain
710 -32 -35 28 19 33 23 5300 4330 23 29 97 122 410 490 0.5 540 620 120 130 1.7 0.1 2.5 0.2 0.36 0.38 0.45 0.47 0.68 -10 2.9
Suffield
755 -31 -34 32 20 37 24 4770 3830 20 25 86 108 230 280 0.2 325 380 220 230 1.3 0.1 1.9 0.2 0.39 0.41 0.49 0.51 0.75 -10 4.5
Taber
815 -31 -33 31 19 36 23 4580 3650 20 25 92 115 260 320 0.3 370 430 200 210 1.2 0.1 1.8 0.2 0.50 0.53 0.63 0.66 0.93 -9 3.8
Turner Valley
1215 -31 -32 28 17 33 21 5220 4260 20 25 97 122 350 420 0.5 600 670 180 190 1.4 0.1 2 0.2 0.52 0.55 0.65 0.68 0.99 -9 3.2
Valleyview
700 -37 -40 27 18 32 22 5600 4620 18 23 86 108 360 450 0.5 490 570 80 2.3 0.1 3.4 0.2 0.34 0.36 0.42 0.44 0.64 -10 3.7
Vegreville
635 -34 -37 29 19 34 23 5780 4790 18 23 86 110 325 380 0.5 410 460 100 1.9 0.1 2.8 0.1 0.29 0.30 0.36 0.38 0.54 -11 3.8
Vermilion
580 -35 -38 29 19 35 23 5740 4750 18 23 86 111 310 370 0.5 410 460 100 1.7 0.1 2.5 0.2 0.29 0.30 0.36 0.38 0.54 -11 3.2
Wagner
585 -35 -38 26 19 31 23 5850 4850 15 19 81 102 380 450 0.6 500 570 80 1.9 0.1 2.8 0.2 0.28 0.29 0.37 0.39 0.6 -11 3.5
Wainwright
675 -33 -36 29 19 35 23 5700 4710 20 26 81 104 310 370 0.5 425 480 120 130 2 0.1 2.9 0.2 0.29 0.30 0.36 0.38 0.54 -11 3.7
Wetaskiwin
760 -33 -35 29 19 34 23 5500 4520 23 29 86 109 400 480 0.6 500 570 160 170 2 0.1 2.9 0.1 0.31 0.33 0.39 0.41 0.6 -10 3.4
Whitecourt
690 -33 -36 27 19 32 23 5650 4670 20 25 97 122 440 530 0.6 550 640 80 1.9 0.1 2.8 0.1 0.28 0.29 0.37 0.39 0.6 -9 3.1
Wimborne
975 -31 -34 29 18 35 22 5310 4340 23 29 92 116 325 390 0.5 450 520 200 210 1.6 0.1 2.3 0.1 0.32 0.34 0.40 0.42 0.61 -9 3.7
Saskatchewan
Assiniboia
740 -32 -34 31 21 36 25 5180 4300 25 32 81 103 290 340 0.3 375 420 240 260 1.6 0.1 2.4 0.2 0.39 0.41 0.49 0.51 0.75 -10 4.7
Battrum
700 -32 -34 32 20 37 24 5080 4210 23 29 81 103 270 320 0.4 350 390 260 280 1.2 0.1 1.8 0.2 0.43 0.45 0.54 0.57 0.82 -10 4.5
Biggar
645 -34 -36 30 20 35 24 5720 4820 23 30 81 105 270 320 0.4 350 390 180 200 2.1 0.1 3.1 0.2 0.36 0.38 0.45 0.47 0.68 -11 4
Broadview
600 -34 -35 30 21 35 25 5760 4850 25 32 103 134 320 380 0.5 420 470 160 170 1.7 0.1 2.5 0.1 0.36 0.38 0.46 0.48 0.72 -11 3.7
Dafoe
530 -35 -37 29 21 34 25 5860 4950 20 26 92 121 300 350 0.5 380 430 140 150 1.7 0.1 2.5 0.1 0.29 0.30 0.37 0.39 0.58 -11 4
Dundurn
525 -35 -37 30 21 35 25 5600 4700 23 30 86 112 275 330 0.4 380 430 180 190 1.5 0.1 2.2 0.2 0.36 0.38 0.46 0.48 0.72 -11 4.2
Estevan
565 -32 -34 32 22 37 25 5340 4450 28 36 92 120 330 390 0.4 420 480 200 220 1.6 0.1 2.4 0.2 0.41 0.43 0.52 0.55 0.81 -11 4.7
Hudson Bay
370 -36 -38 29 21 34 25 6280 5350 20 26 81 105 340 400 0.6 450 500 80 2 0.1 2.8 0.1 0.29 0.30 0.37 0.39 0.58 -12 2.9
Humboldt
565 -36 -38 28 21 33 25 6000 5080 20 26 86 113 320 380 0.5 375 420 140 2.1 0.1 3 0.1 0.31 0.33 0.39 0.41 0.6 -12 4
Island Falls
305 -39 -41 27 20 32 24 7100 6130 18 24 76 99 370 440 0.6 510 570 80 2.1 0.1 2.9 0.1 0.26 0.27 0.35 0.37 0.58 -14 1.8
Kamsack
455 -34 -37 29 22 34 26 6040 5120 20 26 97 126 360 420 0.6 450 500 120 2.1 0.2 3 0.3 0.32 0.34 0.40 0.42 0.61 -11 4
Kindersley
685 -33 -35 31 20 36 24 5550 4650 23 29 81 103 260 310 0.4 325 370 200 220 1.4 0.1 2.1 0.2 0.36 0.38 0.46 0.48 0.72 -11 4.8
Lloydminster
645 -34 -37 28 20 34 24 5880 4970 18 23 81 105 310 370 0.5 430 490 120 2 0.1 2.9 0.2 0.32 0.34 0.40 0.42 0.61 -11 4.6
Maple Creek
765 -31 -34 31 20 36 24 4780 3920 25 32 81 102 275 330 0.3 380 430 220 240 1.2 0.1 1.8 0.2 0.36 0.38 0.45 0.47 0.68 -10 3.3
Meadow Lake
480 -38 -40 28 20 33 24 6280 5350 18 23 81 104 320 380 0.5 450 510 120 1.7 0.1 2.4 0.1 0.30 0.32 0.40 0.42 0.65 -12 3.6
Melfort
455 -36 -38 28 21 33 25 6050 5130 20 26 81 106 310 370 0.5 410 460 120 2.1 0.1 3 0.1 0.28 0.29 0.36 0.38 0.57 -12 3.9
Melville
550 -34 -36 29 21 34 25 5880 4970 23 30 97 127 340 400 0.5 410 460 160 1.7 0.1 2.4 0.1 0.32 0.34 0.40 0.42 0.61 -11 4.5
Moose Jaw
545 -32 -34 31 21 36 25 5270 4390 25 32 86 111 270 320 0.3 360 400 200 210 1.4 0.1 2.1 0.2 0.41 0.43 0.52 0.55 0.81 -10 4.7
Nipawin
365 -37 -39 28 21 33 25 6300 5370 20 26 76 99 340 400 0.6 450 510 100 2 0.1 2.9 0.1 0.30 0.32 0.38 0.40 0.59 -12 4
North Battleford
545 -34 -36 29 20 34 24 5900 4990 20 26 81 105 280 330 0.5 370 420 120 130 1.7 0.1 2.5 0.2 0.36 0.38 0.46 0.48 0.72 -11 4.1
Prince Albert
435 -37 -40 28 21 33 25 6100 5180 20 26 81 105 320 380 0.5 410 460 140 1.9 0.1 2.7 0.1 0.30 0.32 0.38 0.40 0.59 -12 3.3
Qu'Appelle
645 -34 -36 30 22 35 26 5620 4720 25 33 97 127 340 400 0.5 430 480 160 170 1.7 0.1 2.5 0.2 0.33 0.35 0.42 0.44 0.65 -11 4.8
Regina
575 -34 -36 31 21 36 25 5600 4700 28 37 103 134 300 350 0.4 365 410 200 210 1.4 0.1 2.1 0.2 0.39 0.41 0.49 0.51 0.75 -11 5.2
Rosetown
595 -34 -36 31 20 36 24 5620 4720 23 30 81 104 260 310 0.4 330 370 200 220 1.7 0.1 2.5 0.2 0.39 0.41 0.49 0.51 0.75 -11 3.9
Saskatoon
500 -35 -37 30 21 35 25 5700 4800 23 30 86 112 265 310 0.4 350 390 160 170 1.7 0.1 2.5 0.2 0.36 0.38 0.46 0.48 0.72 -11 4.4
Scott
645 -34 -36 30 20 35 24 5960 5040 20 26 81 105 270 320 0.4 360 410 140 150 1.9 0.1 2.8 0.2 0.36 0.38 0.45 0.47 0.68 -11 3.5
Strasbourg
545 -34 -36 30 22 35 26 5600 4700 25 33 92 120 300 360 0.4 390 440 180 190 1.5 0.1 2.2 0.2 0.33 0.35 0.42 0.44 0.65 -11 4.5
Swift Current
750 -31 -34 31 20 36 24 5150 4270 25 32 81 103 260 310 0.3 350 400 240 260 1.4 0.1 2 0.2 0.43 0.45 0.54 0.57 0.82 -10 6
Uranium City
265 -42 -44 26 19 30 22 7500 6510 12 16 54 72 300 370 0.6 360 410 100 2 0.1 2.7 0.1 0.27 0.28 0.36 0.38 0.56 -16 2.8
Weyburn
575 -33 -35 31 23 36 27 5400 4510 28 36 97 126 320 380 0.4 400 450 200 210 1.8 0.1 2.7 0.2 0.38 0.40 0.48 0.50 0.74 -11 4.7
Yorkton
510 -34 -37 29 21 34 25 6000 5080 23 30 97 127 350 410 0.5 440 490 140 1.9 0.1 2.7 0.1 0.32 0.34 0.40 0.42 0.61 -11 4.6
Manitoba
Beausejour
245 -33 -35 29 23 33 26 5680 4780 28 37 103 135 430 510 0.6 530 590 180 200 2 0.2 2.9 0.3 0.32 0.34 0.41 0.43 0.64 -12 3.3
Boissevain
510 -32 -34 30 23 34 26 5500 4610 28 37 119 155 390 460 0.5 510 570 180 190 2.2 0.2 3.2 0.3 0.41 0.43 0.52 0.55 0.81 -11 4.5
Brandon
395 -33 -35 30 22 35 25 5760 4850 28 37 108 141 375 440 0.6 460 520 180 200 2.1 0.2 3 0.3 0.39 0.41 0.49 0.51 0.75 -11 4.7
Churchill
10 -38 -40 25 18 29 22 8950 7890 12 17 76 106 265 330 0.8 410 470 260 280 3 0.2 4.3 0.3 0.43 0.45 0.55 0.58 0.82 -16 5.9
Dauphin
295 -33 -35 30 22 35 26 5900 4990 28 36 103 133 400 480 0.6 490 550 160 170 1.9 0.2 2.8 0.3 0.32 0.34 0.40 0.42 0.61 -11 4
Flin Flon
300 -38 -40 27 20 32 24 6440 5500 18 23 81 106 340 400 0.6 475 530 80 2.2 0.2 3 0.3 0.28 0.29 0.35 0.37 0.53 -14 3
Gimli
220 -34 -36 29 23 33 26 5800 4890 28 37 108 141 410 490 0.7 530 600 180 190 1.9 0.2 2.7 0.3 0.32 0.34 0.40 0.42 0.61 -12 4.1
Island Lake
240 -36 -38 27 20 31 23 6900 5940 18 24 86 114 380 460 0.7 550 620 80 2.6 0.2 3.6 0.3 0.29 0.30 0.37 0.39 0.58 -14 3.3
Lac du Bonnet
260 -34 -36 29 23 33 26 5730 4830 28 37 103 134 445 530 0.7 560 630 180 190 1.9 0.2 2.7 0.3 0.29 0.30 0.37 0.39 0.58 -12 2.8
Lynn Lake
350 -40 -42 27 19 31 23 7770 6770 18 24 86 113 310 370 0.6 490 550 100 2.4 0.2 3.4 0.3 0.29 0.30 0.37 0.39 0.55 -15 2
Morden
300 -31 -33 30 24 34 27 5400 4510 28 37 119 156 420 500 0.6 520 580 180 200 2.2 0.2 3.3 0.3 0.41 0.43 0.52 0.55 0.81 -10 3.7
Neepawa
365 -32 -34 29 23 34 26 5760 4850 28 36 108 141 410 490 0.6 470 530 180 200 2.2 0.2 3.3 0.3 0.35 0.37 0.44 0.46 0.67 -11 4
Pine Falls
220 -34 -36 28 23 32 26 5900 4990 25 33 97 126 440 520 0.7 420 470 180 190 1.9 0.2 2.7 0.3 0.31 0.33 0.39 0.41 0.6 -12 4
Portage la Prairie
260 -31 -33 30 23 34 26 5600 4700 28 37 108 142 390 460 0.5 525 590 180 200 2.1 0.2 3.1 0.3 0.36 0.38 0.46 0.48 0.72 -11 4
Rivers
465 -34 -36 29 23 33 26 5840 4930 28 37 108 141 370 440 0.6 460 520 180 200 2.1 0.2 3 0.3 0.36 0.38 0.46 0.48 0.72 -12 4.4
Sandilands
365 -32 -34 29 23 33 26 5650 4750 28 36 113 147 460 540 0.6 550 610 180 190 2.2 0.2 3.2 0.3 0.32 0.34 0.40 0.42 0.61 -11 4
Selkirk
225 -33 -35 29 23 33 26 5700 4800 28 37 108 142 420 500 0.6 500 560 180 200 1.9 0.2 2.8 0.3 0.32 0.34 0.41 0.43 0.64 -11 4.5
Split Lake
175 -38 -40 27 19 31 23 7900 6890 18 24 76 102 325 400 0.7 500 570 120 2.5 0.2 3.5 0.3 0.31 0.33 0.39 0.41 0.57 -15 3.4
Steinbach
270 -33 -35 29 23 33 26 5700 4800 28 37 108 141 440 520 0.6 500 560 180 200 2 0.2 3 0.3 0.32 0.34 0.40 0.42 0.61 -11 4.1
Swan River
335 -34 -37 29 22 34 26 6100 5180 20 26 92 119 370 440 0.6 500 560 120 2 0.2 2.8 0.3 0.28 0.29 0.35 0.37 0.53 -12 3.5
The Pas
270 -36 -38 28 21 33 25 6480 5540 18 23 81 105 330 390 0.6 450 500 160 2.2 0.2 3.1 0.3 0.29 0.30 0.37 0.39 0.58 -13 3.4
Thompson
205 -40 -43 27 19 31 23 7600 6600 18 24 86 114 350 420 0.6 540 610 100 2.4 0.2 3.3 0.3 0.28 0.29 0.36 0.38 0.54 -15 2.9
Virden
435 -33 -35 30 23 34 26 5620 4720 28 37 108 141 350 410 0.5 460 520 180 200 2 0.2 2.8 0.3 0.36 0.38 0.46 0.48 0.72 -11 4
Winnipeg
235 -33 -35 30 23 34 26 5670 4770 28 37 108 142 415 490 0.6 500 560 180 200 1.9 0.2 2.8 0.3 0.36 0.38 0.45 0.47 0.68 -11 5.2
Ontario
Ailsa Craig
230 -17 -19 30 23 34 26 3840 3050 25 32 103 131 800 920 0.9 950 1030 180 200 2.2 0.4 3.2 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.5
Ajax
95 -20 -22 30 23 34 26 3820 3030 23 30 92 118 760 880 0.9 825 900 160 170 1 0.4 1.5 0.6 0.37 0.41 0.48 0.53 0.8 -6 4
Alexandria
80 -24 -26 30 23 34 26 4600 3740 25 32 103 133 800 950 0.9 1.0 975 1090 160 2.4 0.4 3.4 0.6 0.31 0.34 0.40 0.44 0.67 -8 3.8
Alliston
220 -23 -25 29 23 33 26 4200 3380 28 36 113 145 690 800 0.8 875 960 120 130 2 0.4 2.9 0.6 0.28 0.31 0.36 0.40 0.59 -7 3.5
Almonte
120 -26 -28 30 23 34 26 4620 3760 25 32 97 125 730 870 0.8 0.9 800 890 140 2.5 0.4 3.6 0.6 0.32 0.35 0.41 0.45 0.67 -8 3.8
Armstrong
340 -37 -40 28 21 32 24 6500 5530 23 30 97 126 525 640 0.8 725 820 100 110 2.7 0.4 3.8 0.6 0.22 0.24 0.30 0.33 0.52 -12 2.3
Arnprior
85 -27 -29 30 23 34 26 4680 3820 23 30 86 111 630 750 0.8 0.9 775 870 140 2.5 0.4 3.6 0.6 0.29 0.32 0.37 0.41 0.61 -8 3.5
Atikokan
400 -33 -35 29 22 33 25 5750 4810 25 32 103 133 570 680 0.8 760 850 100 110 2.4 0.3 3.4 0.4 0.22 0.24 0.30 0.33 0.52 -11 1.7
Attawapiskat
10 -37 -39 28 21 32 24 7100 6120 18 25 81 112 450 580 0.8 650 750 160 170 2.8 0.3 3.9 0.4 0.30 0.33 0.41 0.45 0.68 -13 4
Aurora
270 -21 -23 30 23 34 26 4210 3390 28 36 108 139 700 810 0.8 800 880 140 150 2 0.4 2.9 0.6 0.34 0.37 0.44 0.48 0.73 -7 3.5
Bancroft
365 -28 -31 29 23 33 26 4740 3870 25 32 92 118 720 840 0.9 900 980 100 110 3.1 0.4 4.3 0.6 0.25 0.28 0.32 0.35 0.52 -8 1.6
Barrie
245 -24 -26 29 23 33 26 4380 3540 28 36 97 125 700 820 0.8 900 990 120 130 2.5 0.4 3.6 0.6 0.28 0.31 0.36 0.40 0.59 -7 3.6
Barriefield
100 -22 -24 28 23 32 26 3990 3190 23 29 108 138 780 890 1 950 1020 160 170 2.1 0.4 3 0.6 0.37 0.41 0.47 0.52 0.76 -7 4.3
Beaverton
240 -24 -26 30 23 34 26 4300 3470 25 32 108 139 720 830 0.9 950 1030 120 130 2.2 0.4 3.2 0.6 0.28 0.31 0.36 0.40 0.59 -7 4.8
Belleville
90 -22 -24 29 23 33 26 3910 3110 23 29 97 124 760 870 0.9 850 920 180 190 1.7 0.4 2.4 0.6 0.34 0.37 0.43 0.47 0.69 -7 4
Belmont
260 -17 -19 30 24 34 27 3840 3050 25 32 97 123 850 970 1 950 1030 180 200 1.7 0.4 2.5 0.6 0.37 0.41 0.47 0.52 0.76 -6 3.5
Borden (CFB)
225 -23 -25 29 23 33 26 4300 3470 28 36 103 133 690 800 0.8 0.9 875 960 120 130 2.2 0.4 3.2 0.6 0.28 0.31 0.36 0.40 0.59 -6 3.6
Bracebridge
310 -26 -28 29 23 33 26 4800 3920 25 32 103 132 830 960 1 1050 1120 120 130 3.1 0.4 4.3 0.6 0.27 0.30 0.35 0.39 0.58 -8 2
Bradford
240 -23 -25 30 23 34 26 4280 3450 28 36 108 139 680 790 0.8 800 880 120 130 2.1 0.4 3 0.6 0.28 0.31 0.36 0.40 0.59 -7 3.5
Brampton
215 -19 -21 30 23 34 26 4100 3290 28 36 119 152 720 840 0.8 820 900 140 150 1.3 0.4 1.9 0.6 0.34 0.37 0.44 0.48 0.73 -6 5
Brantford
205 -18 -20 30 23 34 26 3900 3110 23 29 103 131 780 900 0.9 850 930 160 170 1.3 0.4 1.9 0.6 0.33 0.36 0.42 0.46 0.68 -6 4.4
Brighton
95 -21 -23 29 23 33 26 4000 3200 23 29 94 121 760 870 0.9 850 920 160 170 1.6 0.4 2.3 0.6 0.37 0.41 0.48 0.53 0.8 -6 3.8
Brockville
85 -23 -25 29 23 33 26 4060 3250 25 32 103 132 770 900 0.9 975 1070 180 2.2 0.4 3.1 0.6 0.34 0.37 0.44 0.48 0.73 -8 3.2
Burk's Falls
305 -26 -28 29 22 33 25 5020 4120 25 32 97 125 810 950 0.9 1010 1090 120 2.7 0.4 3.7 0.6 0.27 0.30 0.35 0.39 0.58 -9 2.5
Burlington
80 -17 -19 31 23 35 26 3740 2960 23 29 103 131 770 890 0.9 850 930 160 170 1.1 0.4 1.6 0.6 0.36 0.40 0.46 0.51 0.75 -5 4
Cambridge
295 -18 -20 29 23 33 26 4100 3290 25 32 113 144 800 920 0.9 890 970 160 170 1.6 0.4 2.3 0.6 0.28 0.31 0.36 0.40 0.59 -6 4.4
Campbellford
150 -23 -26 30 23 34 26 4280 3450 25 32 97 125 730 840 0.9 850 930 160 170 1.7 0.4 2.4 0.6 0.32 0.35 0.41 0.45 0.67 -7 2.2
Cannington
255 -24 -26 30 23 34 26 4310 3480 25 32 108 139 740 860 0.9 950 1030 120 130 2.2 0.4 3.2 0.6 0.28 0.31 0.36 0.40 0.59 -7 3.5
Carleton Place
135 -25 -27 30 23 34 26 4600 3740 25 32 97 124 730 870 0.8 0.9 850 950 160 2.5 0.4 3.6 0.6 0.32 0.35 0.41 0.45 0.67 -8 2.8
Cavan
200 -23 -25 30 23 34 26 4400 3560 25 32 97 125 740 850 0.9 850 920 140 150 2 0.4 2.9 0.6 0.34 0.37 0.44 0.48 0.73 -7 3.3
Centralia
260 -17 -19 30 23 34 26 3800 3010 25 32 103 131 820 940 1 1000 1080 180 200 2.3 0.4 3.3 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.5
Chapleau
425 -35 -38 27 21 31 24 5900 4950 20 26 97 126 530 640 0.7 850 950 80 3.6 0.4 5.1 0.6 0.23 0.25 0.30 0.33 0.5 -10 3.5
Chatham
180 -16 -18 31 24 34 27 3470 2710 28 35 103 130 800 910 0.9 850 930 180 190 1 0.4 1.5 0.6 0.34 0.37 0.43 0.47 0.69 -5 5
Chesley
275 -19 -21 29 22 33 25 4320 3490 28 36 103 132 810 940 0.9 1125 1210 140 150 2.8 0.4 4 0.6 0.35 0.39 0.45 0.50 0.74 -6 4
Clinton
280 -17 -19 29 23 33 26 4150 3330 25 32 103 132 810 930 0.9 1000 1080 160 170 2.6 0.4 3.8 0.6 0.36 0.40 0.46 0.51 0.75 -6 5
Coboconk
270 -25 -27 30 23 34 26 4500 3650 25 32 108 139 740 850 0.9 950 1030 120 130 2.5 0.4 3.5 0.6 0.27 0.30 0.35 0.39 0.58 -7 2
Cobourg
90 -21 -23 29 23 33 26 3980 3180 23 30 94 121 760 870 0.9 825 900 160 170 1.2 0.4 1.7 0.6 0.38 0.42 0.49 0.54 0.81 -6 3.6
Cochrane
245 -34 -36 29 21 33 24 6200 5240 20 26 92 121 575 700 0.8 875 980 80 2.8 0.3 3.9 0.4 0.27 0.30 0.35 0.39 0.55 -12 3.8
Colborne
105 -21 -23 29 23 33 26 3980 3180 23 30 94 121 760 870 0.9 850 930 160 170 1.6 0.4 2.3 0.6 0.38 0.42 0.49 0.54 0.81 -6 3.6
Collingwood
190 -21 -23 29 23 33 26 4180 3360 28 36 97 124 720 840 0.9 950 1030 160 170 2.7 0.4 3.9 0.6 0.30 0.33 0.39 0.43 0.65 -6 3.7
Cornwall
35 -23 -25 30 23 34 26 4250 3420 25 32 103 132 780 930 0.9 1.0 960 1080 180 2.2 0.4 3 0.6 0.32 0.35 0.41 0.45 0.67 -8 3.1
Corunna
185 -16 -18 31 24 34 27 3600 2830 25 32 100 126 760 870 0.9 800 880 180 190 1 0.4 1.5 0.6 0.37 0.41 0.47 0.52 0.76 -5 4.7
Deep River
145 -29 -32 30 22 34 25 4900 3980 23 30 92 118 650 780 0.8 850 950 100 110 2.5 0.4 3.5 0.6 0.27 0.30 0.35 0.39 0.58 -9 3.2
Deseronto
85 -22 -24 29 23 33 26 4070 3260 23 29 92 118 760 870 0.9 900 980 160 170 1.9 0.4 2.8 0.6 0.34 0.37 0.43 0.47 0.69 -7 4
Dorchester
260 -18 -20 30 24 34 27 3900 3110 28 36 103 131 850 970 1 950 1030 180 200 1.9 0.4 2.7 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.4
Dorion
200 -33 -35 28 21 32 24 5950 5000 20 26 103 133 550 670 0.8 725 810 160 170 2.8 0.4 4 0.6 0.29 0.32 0.39 0.43 0.67 -10 3.3
Dresden
185 -16 -18 31 24 34 27 3750 2970 28 35 97 122 760 870 0.8 820 900 180 190 1 0.4 1.5 0.6 0.34 0.37 0.43 0.47 0.69 -6 4.2
Dryden
370 -34 -36 28 22 32 25 5850 4940 25 32 97 126 550 660 0.7 700 780 120 130 2.4 0.3 3.4 0.4 0.22 0.24 0.30 0.33 0.52 -11 3.9
Dundalk
525 -22 -24 29 22 33 25 4700 3830 28 36 108 139 750 870 0.9 1080 1170 150 160 3.2 0.4 4.6 0.6 0.33 0.36 0.42 0.46 0.68 -7 3.8
Dunnville
175 -15 -17 30 24 34 27 3660 2890 23 29 108 137 830 960 1 950 1040 160 170 2 0.4 3 0.6 0.36 0.40 0.46 0.51 0.75 -5 3.8
Durham
340 -20 -22 29 22 33 25 4340 3510 28 36 103 132 815 950 0.9 1025 1110 140 150 2.8 0.4 4 0.6 0.34 0.37 0.44 0.48 0.73 -7 3.8
Dutton
225 -16 -18 31 24 35 27 3700 2920 28 35 92 116 850 970 1 925 1010 180 190 1.3 0.4 1.9 0.6 0.37 0.41 0.47 0.52 0.76 -6 4
Earlton
245 -33 -36 29 22 33 25 5730 4790 23 30 92 120 560 670 0.8 820 910 120 130 3.1 0.4 4.3 0.6 0.35 0.39 0.45 0.50 0.74 -11 4.2
Edison
365 -34 -36 28 22 32 25 5740 4840 25 32 108 140 510 610 0.7 680 760 120 130 2.4 0.3 3.4 0.4 0.23 0.25 0.31 0.34 0.53 -11 3.9
Elliot Lake
380 -26 -28 29 21 33 24 4950 4030 23 30 108 139 630 740 0.8 950 1030 160 170 2.9 0.4 4.1 0.6 0.30 0.33 0.38 0.42 0.62 -8 4
Elmvale
220 -24 -26 29 23 33 26 4200 3380 28 36 97 125 720 840 0.9 950 1030 140 150 2.6 0.4 3.7 0.6 0.28 0.31 0.36 0.40 0.59 -6 3.7
Embro
310 -19 -21 30 23 34 26 3950 3150 28 36 113 144 830 950 0.9 950 1030 160 180 2 0.4 2.9 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.4
Englehart
205 -33 -36 29 22 33 25 5800 4860 23 30 92 120 600 720 0.8 880 980 100 110 2.8 0.4 3.9 0.6 0.32 0.35 0.41 0.45 0.67 -11 4.2
Espanola
220 -25 -27 29 21 33 24 4920 4000 23 30 108 139 650 760 0.8 840 910 160 170 2.3 0.4 3.3 0.6 0.33 0.36 0.42 0.46 0.68 -8 4
Exeter
265 -17 -19 30 23 34 26 3900 3110 25 32 113 144 810 930 0.9 975 1050 180 200 2.4 0.4 3.4 0.6 0.37 0.41 0.48 0.53 0.8 -6 5
Fenelon Falls
260 -25 -27 30 23 34 26 4440 3600 25 32 108 139 730 840 0.9 950 1030 120 130 2.3 0.4 3.3 0.6 0.28 0.31 0.36 0.40 0.59 -7 2
Fergus
400 -20 -22 29 23 33 26 4300 3470 28 36 108 138 760 880 0.9 925 1010 160 170 2.2 0.4 3.2 0.6 0.28 0.31 0.36 0.40 0.59 -6 4.3
Forest
215 -16 -18 31 23 35 26 3740 2960 25 32 103 131 810 930 1.0 1.1 875 960 160 170 2 0.4 2.9 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.7
Fort Erie
180 -15 -17 30 24 34 27 3650 2880 23 29 108 137 860 1000 1 1020 1120 160 170 2.3 0.4 3.4 0.6 0.36 0.40 0.46 0.51 0.75 -5 5
Fort Erie (Ridgeway)
190 -15 -17 30 24 34 27 3600 2830 25 32 108 137 860 1000 1 1000 1100 160 170 2.3 0.4 3.4 0.6 0.36 0.40 0.46 0.51 0.75 -5 5
Fort Frances
340 -33 -35 29 22 33 25 5440 4550 25 32 108 139 570 680 0.7 725 810 120 130 2.3 0.3 3.3 0.4 0.23 0.25 0.31 0.34 0.53 -11 3.2
Gananoque
80 -22 -24 28 23 32 26 4010 3210 23 29 103 132 760 870 0.9 900 980 180 2.1 0.4 3 0.6 0.37 0.41 0.47 0.52 0.76 -7 3.8
Geraldton
345 -36 -39 28 21 32 24 6450 5490 20 26 86 112 550 670 0.8 725 810 100 110 2.9 0.4 4 0.6 0.22 0.24 0.30 0.33 0.52 -11 2.5
Glencoe
215 -16 -18 31 24 35 27 3680 2900 28 35 103 130 800 910 0.9 925 1010 180 190 1.5 0.4 2.2 0.6 0.34 0.37 0.43 0.47 0.69 -6 4.2
Goderich
185 -16 -18 29 23 33 26 4000 3200 25 32 92 117 810 930 1 950 1030 180 200 2.4 0.4 3.5 0.6 0.37 0.41 0.48 0.53 0.8 -6 5.3
Gore Bay
205 -24 -26 28 22 32 25 4700 3830 23 30 92 118 640 750 0.8 860 930 160 170 2.6 0.4 3.7 0.6 0.34 0.37 0.44 0.48 0.73 -8 4.3
Graham
495 -35 -37 29 22 33 25 5940 4990 23 30 97 126 570 680 0.8 750 830 140 150 2.6 0.3 3.7 0.4 0.22 0.24 0.30 0.33 0.52 -11 2.5
Gravenhurst (Muskoka Airport)
255 -26 -28 29 23 33 26 4760 3890 25 32 103 132 790 910 0.9 1050 1120 120 130 2.7 0.4 3.8 0.6 0.28 0.31 0.36 0.40 0.59 -8 2
Grimsby
85 -16 -18 30 23 34 26 3520 2760 23 29 108 138 760 880 0.9 875 960 160 170 0.9 0.4 1.3 0.6 0.36 0.40 0.46 0.51 0.75 -5 4.5
Guelph
340 -19 -21 29 23 33 26 4270 3440 28 36 103 132 770 890 0.9 875 950 140 150 1.9 0.4 2.7 0.6 0.28 0.31 0.36 0.40 0.59 -6 4.5
Guthrie
280 -24 -26 29 23 33 26 4300 3470 28 36 103 133 700 810 0.8 950 1030 120 130 2.5 0.4 3.6 0.6 0.28 0.31 0.36 0.40 0.59 -7 3.5
Haileybury
210 -32 -35 30 22 34 25 5600 4660 23 30 92 120 590 710 0.8 820 910 120 130 2.4 0.4 3.3 0.6 0.34 0.37 0.44 0.48 0.73 -11 3.9
Haldimand (Caledonia)
190 -18 -20 30 23 34 26 3750 2970 23 29 108 138 810 930 0.9 875 960 160 170 1.2 0.4 1.8 0.6 0.34 0.37 0.44 0.48 0.73 -6 4.5
Haldimand (Hagersville)
215 -17 -19 30 23 34 26 3760 2980 25 32 97 123 840 970 1 875 950 160 170 1.3 0.4 1.9 0.6 0.36 0.40 0.46 0.51 0.75 -6 4.5
Haliburton
335 -27 -29 29 23 33 26 4840 3960 25 32 92 118 780 910 0.9 980 1060 100 110 2.9 0.4 4 0.6 0.27 0.30 0.35 0.39 0.58 -8 2
Halton Hills (Georgetown)
255 -19 -21 30 23 34 26 4200 3380 28 36 119 152 750 870 0.8 850 930 140 150 1.4 0.4 2 0.6 0.29 0.32 0.37 0.41 0.61 -6 4.8
Hamilton
90 -17 -19 31 23 35 26 3460 2700 23 29 108 138 810 930 0.9 875 960 160 170 1.1 0.4 1.6 0.6 0.36 0.40 0.46 0.51 0.75 -6 3.5
Hanover
270 -19 -21 29 22 33 25 4300 3470 28 36 103 132 790 920 0.9 1050 1130 140 150 2.6 0.4 3.8 0.6 0.34 0.37 0.44 0.48 0.73 -7 3.8
Hastings
200 -24 -26 30 23 34 26 4280 3450 25 32 92 118 730 840 0.9 840 910 140 150 2 0.4 2.8 0.6 0.32 0.35 0.41 0.45 0.67 -7 3
Hawkesbury
50 -25 -27 30 23 34 26 4610 3750 23 30 103 133 800 950 0.9 1.0 925 1030 160 2.3 0.4 3.2 0.6 0.32 0.35 0.41 0.45 0.67 -8 3.8
Hearst
245 -35 -37 29 21 33 24 6450 5490 20 26 86 113 520 640 0.7 825 930 80 2.8 0.3 3.9 0.4 0.23 0.25 0.30 0.33 0.47 -12 3.5
Honey Harbour
180 -24 -26 29 23 33 26 4300 3470 25 32 97 124 710 820 0.9 1050 1120 160 170 2.7 0.4 3.8 0.6 0.30 0.33 0.39 0.43 0.65 -7 4
Hornepayne
360 -37 -40 28 21 32 24 6340 5380 20 26 93 121 420 510 0.7 750 840 80 3.3 0.4 4.5 0.6 0.22 0.24 0.30 0.33 0.52 -11 3
Huntsville
335 -26 -29 29 22 33 25 4850 3970 25 32 103 132 800 930 0.9 1000 1080 120 2.9 0.4 4 0.6 0.27 0.30 0.35 0.39 0.58 -8 2
Ingersoll
280 -18 -20 30 23 34 26 3920 3120 28 36 108 138 840 960 1 950 1030 180 200 1.7 0.4 2.4 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.4
Iroquois Falls
275 -33 -36 29 21 33 24 6100 5150 20 26 86 113 575 700 0.8 825 920 100 2.9 0.3 4 0.4 0.29 0.32 0.37 0.41 0.58 -11 3.5
Jellicoe
330 -36 -39 28 21 32 24 6400 5440 20 26 86 112 550 670 0.8 750 840 100 110 2.7 0.4 3.8 0.6 0.22 0.24 0.30 0.33 0.52 -11 2.3
Kapuskasing
245 -34 -36 29 21 33 24 6250 5290 20 26 86 113 550 670 0.8 825 930 100 3 0.3 4.2 0.4 0.24 0.26 0.31 0.34 0.49 -12 3.9
Kemptville
90 -25 -27 30 23 34 26 4540 3690 25 32 92 118 750 880 0.9 1.0 925 1030 160 2.3 0.4 3.3 0.6 0.32 0.35 0.41 0.45 0.67 -8 2.3
Kenora
370 -33 -35 28 22 32 25 5630 4730 25 32 113 146 515 610 0.6 630 700 120 2.5 0.3 3.6 0.4 0.23 0.25 0.31 0.34 0.53 -11 2.9
Killaloe
185 -28 -31 30 22 34 25 4960 4070 23 30 86 110 680 820 0.8 825 920 120 2.7 0.4 3.9 0.6 0.27 0.30 0.35 0.39 0.58 -9 2
Kincardine
190 -17 -19 28 22 32 25 3890 3100 25 32 92 118 800 930 1 950 1030 180 190 2.6 0.4 3.8 0.6 0.37 0.41 0.48 0.53 0.8 -6 5.3
Kingston
80 -22 -24 28 23 32 26 4000 3200 23 29 108 138 780 890 1 950 1020 180 190 2.1 0.4 3 0.6 0.37 0.41 0.47 0.52 0.76 -7 4.3
Kinmount
295 -26 -28 29 23 33 26 4600 3740 25 32 108 139 750 870 0.9 950 1030 120 130 2.7 0.4 3.8 0.6 0.27 0.30 0.35 0.39 0.58 -7 2
Kirkland Lake
325 -33 -36 29 22 33 25 6000 5050 23 30 92 120 600 720 0.8 875 970 100 2.9 0.3 4 0.4 0.30 0.33 0.39 0.43 0.62 -11 3.8
Kitchener
335 -19 -21 29 23 33 26 4200 3380 28 36 119 152 780 900 0.9 925 1010 140 150 2 0.4 2.9 0.6 0.29 0.32 0.37 0.41 0.61 -6 4.5
Kitchenuhmaykoosib / Big Trout Lake
215 -38 -40 26 20 30 23 7450 18 24 92 123 400 490 0.8 600 680 150 3.2 0.2 4.6 0.3 0.31 0.34 0.42 0.46 0.69 -14 3.7
Lakefield
240 -24 -26 30 23 34 26 4330 3500 25 32 92 118 720 830 0.9 850 920 140 150 2.2 0.4 3.1 0.6 0.30 0.33 0.38 0.42 0.62 -7 2
Lansdowne House
240 -38 -40 28 21 32 24 7150 6160 23 30 92 122 500 610 0.8 680 770 140 150 3 0.2 4.2 0.3 0.24 0.26 0.32 0.35 0.52 -13 3.5
Leamington
190 -15 -17 31 24 34 27 3400 2650 28 35 113 142 800 910 0.9 875 960 180 190 0.8 0.4 1.2 0.6 0.37 0.41 0.47 0.52 0.76 -5 5
Lindsay
265 -24 -26 30 23 34 26 4320 3490 25 32 103 133 720 830 0.8 850 930 140 150 2.3 0.4 3.3 0.6 0.30 0.33 0.38 0.42 0.62 -7 2.5
Lion's Head
185 -19 -21 27 22 31 25 4300 3470 25 32 103 132 700 820 0.9 950 1020 180 190 2.7 0.4 3.9 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.1
Listowel
380 -19 -21 29 23 33 26 4300 3470 28 36 119 152 800 920 0.9 1000 1080 160 170 2.6 0.4 3.8 0.6 0.34 0.37 0.43 0.47 0.69 -6 4.5
London
245 -18 -20 30 24 34 27 3900 3110 28 36 103 131 825 940 0.9 975 1060 180 200 1.9 0.4 2.8 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.4
Lucan
300 -17 -19 30 23 34 26 3900 3110 25 32 113 144 810 930 0.9 1000 1090 180 200 2.3 0.4 3.3 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.6
Maitland
85 -23 -25 29 23 33 26 4080 3270 25 32 103 132 770 900 0.9 1.0 975 1070 180 2.2 0.4 3.1 0.6 0.34 0.37 0.44 0.48 0.73 -8 3.2
Markdale
425 -20 -22 29 22 33 25 4500 3650 28 36 103 132 820 960 0.9 1050 1130 160 170 3.2 0.4 4.6 0.6 0.32 0.35 0.41 0.45 0.67 -6 3.6
Markham
175 -21 -23 31 24 35 27 4000 3200 25 32 86 110 720 830 0.8 825 900 140 150 1.3 0.4 1.9 0.6 0.34 0.37 0.44 0.48 0.73 -6 4.2
Martin
485 -35 -37 29 22 33 25 5900 4950 25 32 103 133 560 670 0.8 750 830 120 130 2.6 0.3 3.7 0.4 0.22 0.24 0.30 0.33 0.52 -11 2.8
Matheson
265 -33 -36 29 21 33 24 6080 5130 20 26 86 113 580 700 0.8 825 920 100 2.8 0.3 3.9 0.4 0.30 0.33 0.39 0.43 0.62 -11 3.5
Mattawa
165 -29 -31 30 22 34 25 5050 4130 23 30 86 111 700 830 0.9 875 960 100 110 2.1 0.4 2.9 0.6 0.25 0.28 0.32 0.35 0.52 -9 3.2
Midland
190 -24 -26 29 23 33 26 4200 3380 25 32 97 124 740 860 0.9 1060 1140 160 170 2.7 0.4 3.9 0.6 0.30 0.33 0.39 0.43 0.65 -6 3.7
Milton
200 -18 -20 30 23 34 26 3920 3120 25 32 125 160 750 870 0.9 850 930 160 170 1.3 0.4 1.9 0.6 0.34 0.37 0.43 0.47 0.69 -6 4.5
Milverton
370 -19 -21 29 23 33 26 4200 3380 28 36 108 138 800 920 0.9 1050 1140 160 170 2.4 0.4 3.5 0.6 0.34 0.37 0.43 0.47 0.69 -6 4.6
Minden
270 -27 -29 29 23 33 26 4640 3780 25 32 97 124 780 900 0.9 1010 1090 100 110 2.7 0.4 3.7 0.6 0.27 0.30 0.35 0.39 0.58 -8 2
Mississauga
160 -18 -20 30 23 34 26 3880 3090 25 32 113 145 720 830 0.9 800 880 160 170 1.1 0.4 1.6 0.6 0.34 0.37 0.44 0.48 0.73 -5 5.2
Mississauga (Lester B. Pearson Int'l Airport)
170 -20 -22 31 24 35 27 3890 26 33 108 138 685 790 0.8 790 870 160 170 1.1 0.4 1.6 0.6 0.34 0.37 0.44 0.48 0.73 -6 5.2
Mississauga (Port Credit)
75 -18 -20 29 23 33 26 3780 3000 25 32 108 138 720 830 0.9 800 880 160 170 0.9 0.4 1.3 0.6 0.37 0.41 0.48 0.53 0.8 -6 5.2
Mitchell
335 -18 -20 29 23 33 26 4100 3290 28 36 113 144 810 930 0.9 1050 1140 160 170 2.4 0.4 3.5 0.6 0.35 0.39 0.45 0.50 0.74 -6 4.5
Moosonee
10 -36 -38 28 22 32 25 6800 5820 18 25 81 111 500 630 0.8 700 790 160 170 2.7 0.3 3.8 0.4 0.26 0.29 0.35 0.39 0.58 -12 4
Morrisburg
75 -23 -25 30 23 34 26 4370 3530 25 32 103 132 800 940 0.9 1.0 950 1050 180 2.3 0.4 3.2 0.6 0.32 0.35 0.41 0.45 0.67 -8 3.5
Mount Forest
420 -21 -24 28 22 32 25 4700 3830 28 36 103 132 740 860 0.9 940 1020 140 150 2.7 0.4 3.9 0.6 0.32 0.35 0.41 0.45 0.67 -7 3.3
Nakina
325 -36 -38 28 21 32 24 6500 5530 20 26 86 113 540 660 0.8 750 850 100 110 2.8 0.4 3.8 0.5 0.22 0.24 0.30 0.33 0.52 -12 2.7
Nanticoke (Jarvis)
205 -17 -18 30 23 34 26 3700 2920 28 36 108 137 840 970 1 900 980 160 170 1.4 0.4 2.1 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.5
Nanticoke (Port Dover)
180 -15 -17 30 24 34 27 3600 2830 25 32 108 137 860 990 1 950 1030 140 150 1.2 0.4 1.8 0.6 0.37 0.41 0.48 0.53 0.8 -5 5
Napanee
90 -22 -24 29 23 33 26 4140 3320 23 29 92 118 770 880 0.9 900 970 160 170 1.9 0.4 2.8 0.6 0.34 0.37 0.43 0.47 0.69 -7 4
Newcastle
115 -20 -22 30 23 34 26 3990 3190 23 30 86 111 760 880 0.9 830 900 160 170 1.5 0.4 2.2 0.6 0.37 0.41 0.48 0.53 0.8 -6 4
Newcastle (Bowmanville)
95 -20 -22 30 23 34 26 4000 23 30 86 110 760 880 0.9 830 910 160 170 1.4 0.4 2 0.6 0.37 0.41 0.48 0.53 0.8 -6 4
New Liskeard
180 -32 -35 30 22 34 25 5570 4630 23 30 92 120 570 680 0.8 810 900 100 110 2.6 0.4 3.6 0.6 0.34 0.37 0.43 0.47 0.69 -11 4.2
Newmarket
185 -22 -24 30 23 34 26 4260 3430 28 36 108 139 700 810 0.8 800 880 140 150 2 0.4 2.9 0.6 0.30 0.33 0.38 0.42 0.62 -7 3.5
Niagara Falls
210 -16 -18 30 23 34 26 3600 2830 23 29 96 122 810 940 0.9 950 1040 160 170 1.8 0.4 2.7 0.6 0.34 0.37 0.43 0.47 0.69 -5 4
North Bay
210 -28 -30 28 22 32 25 5150 4230 25 32 95 123 775 920 0.9 975 1060 120 2.2 0.4 3 0.6 0.27 0.30 0.34 0.37 0.54 -9 4.4
Norwood
225 -24 -26 30 23 34 26 4320 3490 25 32 92 118 720 830 0.8 850 930 120 130 2.1 0.4 3 0.6 0.32 0.35 0.41 0.45 0.67 -7 2
Oakville
90 -18 -20 30 23 34 26 3760 2980 23 29 97 124 750 870 0.9 850 930 160 170 1.1 0.4 1.6 0.6 0.37 0.41 0.47 0.52 0.76 -5 5.2
Orangeville
430 -21 -23 29 23 33 26 4450 3610 28 36 108 139 730 850 0.8 875 960 140 150 2.3 0.4 3.3 0.6 0.28 0.31 0.36 0.40 0.59 -7 4
Orillia
230 -25 -27 29 23 33 26 4260 3430 25 32 103 132 740 860 0.9 1000 1080 120 130 2.4 0.4 3.4 0.6 0.28 0.31 0.36 0.40 0.59 -7 3.5
Oshawa
110 -19 -21 30 23 34 26 3860 3070 23 30 86 110 760 880 0.9 875 950 160 170 1.4 0.4 2 0.6 0.37 0.41 0.48 0.53 0.8 -6 4
Ottawa (Metropolitan)
Ottawa (Barrhaven)
98 -25 -27 30 23 34 26 4500 3600 25 32 92 119 750 890 0.8 0.9 900 1000 160 2.4 0.4 3.5 0.6 0.32 0.35 0.41 0.45 0.67 -8 4.4
Ottawa (City Hall)
70 -25 -27 30 23 34 26 4440 3650 23 30 86 111 750 890 0.8 0.9 900 1000 160 2.4 0.4 3.4 0.6 0.32 0.35 0.41 0.45 0.67 -8 3.5
Ottawa (Kanata)
98 -25 -27 30 23 34 26 4520 3670 25 32 92 118 730 870 0.8 0.9 900 1000 160 2.5 0.4 3.6 0.6 0.32 0.35 0.41 0.45 0.67 -8 4.4
Ottawa (M-C Int'l Airport)
125 -25 -27 30 23 34 26 4500 3650 24 31 89 115 750 890 0.8 0.9 900 1000 160 2.4 0.4 3.5 0.6 0.32 0.35 0.41 0.45 0.67 -8 4.4
Ottawa (Orléans)
70 -26 -28 30 23 33 26 4500 3650 23 30 91 118 750 890 0.8 0.9 900 1000 160 2.4 0.4 3.4 0.6 0.32 0.35 0.41 0.45 0.67 -8 3.5
Owen Sound
215 -19 -21 29 22 33 25 4030 3220 28 36 113 145 760 890 0.9 1075 1150 160 170 2.8 0.4 4 0.6 0.34 0.37 0.44 0.48 0.73 -6 4
Pagwa River
185 -35 -37 28 21 32 24 6500 5530 20 26 86 113 540 660 0.8 825 930 80 2.7 0.4 3.6 0.5 0.22 0.24 0.30 0.33 0.52 -12 2.7
Paris
245 -18 -20 30 23 34 26 4000 3200 23 29 96 122 790 910 0.9 925 1010 160 170 1.4 0.4 2 0.6 0.33 0.36 0.42 0.46 0.68 -6 4.2
Parkhill
205 -16 -18 31 23 35 26 3800 3010 25 32 103 131 800 920 0.9 925 1010 180 200 2.1 0.4 3.1 0.6 0.37 0.41 0.48 0.53 0.8 -6 5
Parry Sound
215 -24 -26 28 22 32 25 4640 3780 23 30 97 124 820 950 1 1050 1110 160 170 2.8 0.4 4 0.6 0.30 0.33 0.39 0.43 0.65 -8 3.7
Pelham (Fonthill)
230 -15 -17 30 23 34 26 3690 2910 23 29 96 122 820 950 0.9 950 1040 160 170 2.1 0.4 3.1 0.6 0.33 0.36 0.42 0.46 0.68 -6 4
Pembroke
125 -28 -31 30 23 34 26 4980 4090 23 30 105 135 640 770 0.8 825 930 100 2.5 0.4 3.5 0.6 0.27 0.30 0.35 0.39 0.58 -9 2.7
Penetanguishene
220 -24 -26 29 23 33 26 4200 3380 25 32 97 124 720 830 0.9 1050 1120 160 170 2.8 0.4 4 0.6 0.30 0.33 0.39 0.43 0.65 -7 3.7
Perth
130 -25 -27 30 23 34 26 4540 3690 25 32 92 118 730 860 0.8 900 1000 140 2.3 0.4 3.3 0.6 0.32 0.35 0.41 0.45 0.67 -8 2.3
Petawawa
135 -29 -31 30 23 34 26 4980 4090 23 30 92 118 640 770 0.8 825 920 100 2.6 0.4 3.6 0.6 0.27 0.30 0.35 0.39 0.58 -9 2.7
Peterborough
200 -23 -25 30 23 34 26 4400 3560 25 32 92 118 710 820 0.8 840 910 140 150 2 0.4 2.9 0.6 0.32 0.35 0.41 0.45 0.67 -7 2.8
Petrolia
195 -16 -18 31 24 34 27 3640 2870 25 32 108 137 810 930 0.9 920 1010 180 200 1.3 0.4 1.9 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.2
Pickering (Dunbarton)
85 -19 -21 30 23 34 26 3800 3010 23 29 92 118 730 840 0.9 825 900 140 150 1 0.4 1.5 0.6 0.37 0.41 0.48 0.53 0.8 -6 4
Picton
95 -21 -23 29 23 33 26 3980 3180 23 29 92 117 770 890 0.9 940 1020 160 170 2 0.4 2.9 0.6 0.38 0.42 0.49 0.54 0.81 -6 4.5
Plattsville
300 -19 -21 29 23 33 26 4150 3330 28 36 103 132 820 940 0.9 950 1030 140 150 1.9 0.4 2.8 0.6 0.33 0.36 0.42 0.46 0.68 -6 4.2
Point Alexander
150 -29 -32 30 22 34 25 4960 4040 23 30 92 118 650 780 0.8 850 950 100 110 2.5 0.4 3.5 0.6 0.27 0.30 0.35 0.39 0.58 -9 3.2
Port Burwell
195 -15 -17 30 24 34 27 3800 3010 25 32 92 117 930 1060 1.1 1000 1090 180 190 1.2 0.4 1.7 0.6 0.37 0.41 0.47 0.52 0.76 -5 5
Port Colborne
180 -15 -17 30 24 34 27 3600 2830 23 29 108 137 850 990 1 1000 1100 160 170 2.1 0.4 3.1 0.6 0.36 0.40 0.46 0.51 0.75 -5 5
Port Elgin
205 -17 -19 28 22 32 25 4100 3290 25 32 92 118 790 920 0.9 850 920 180 190 2.8 0.4 4 0.6 0.37 0.41 0.48 0.53 0.8 -6 5.3
Port Hope
100 -21 -23 29 23 33 26 3970 3170 23 30 94 121 760 880 0.9 825 900 180 190 1.2 0.4 1.7 0.6 0.37 0.41 0.48 0.53 0.8 -6 4
Port Perry
270 -22 -24 30 23 34 26 4260 3430 25 32 97 125 720 830 0.8 850 930 140 150 2.4 0.4 3.5 0.6 0.34 0.37 0.44 0.48 0.73 -7 3.4
Port Stanley
180 -15 -17 31 24 35 27 3850 3060 25 32 92 117 940 1070 1.1 975 1060 180 190 1.2 0.4 1.7 0.6 0.37 0.41 0.47 0.52 0.76 -5 5
Prescott
90 -23 -25 29 23 33 26 4120 3310 25 32 103 132 770 900 0.9 1.0 975 1080 180 2.2 0.4 3.1 0.6 0.34 0.37 0.44 0.48 0.73 -8 3.2
Princeton
280 -18 -20 30 23 34 26 4000 3200 25 32 97 124 810 930 0.9 925 1010 160 170 1.5 0.4 2.2 0.6 0.33 0.36 0.42 0.46 0.68 -6 4.2
Raith
475 -34 -37 28 22 32 25 5900 4950 23 30 97 125 570 690 0.8 750 840 120 130 2.7 0.4 3.8 0.6 0.22 0.24 0.30 0.33 0.52 -11 2.3
Rayside-Balfour (Chelmsford)
270 -28 -30 29 21 33 24 5200 4280 25 32 92 119 650 770 0.8 850 930 180 190 2.5 0.4 3.5 0.6 0.35 0.39 0.45 0.50 0.74 -9 3.8
Red Lake
360 -35 -37 28 21 32 26 6220 5290 20 26 92 120 470 560 0.7 630 700 120 130 2.6 0.3 3.7 0.4 0.22 0.24 0.30 0.33 0.52 -11 3.5
Renfrew
115 -27 -30 30 23 34 26 4900 4020 23 30 97 125 620 740 0.8 0.9 810 910 140 2.5 0.4 3.5 0.6 0.27 0.30 0.35 0.39 0.58 -9 3.5
Richmond Hill
230 -21 -23 31 24 35 27 4000 3200 25 32 97 125 740 860 0.8 850 930 140 150 1.5 0.4 2.2 0.6 0.34 0.37 0.44 0.48 0.73 -6 3.5
Rockland
50 -26 -28 30 23 34 26 4600 3740 23 30 92 119 780 920 0.9 1.0 950 1050 160 2.4 0.4 3.3 0.6 0.31 0.34 0.40 0.44 0.67 -8 3.5
Sarnia
190 -16 -18 31 24 34 27 3750 2970 25 32 100 126 750 860 0.9 825 910 180 190 1.1 0.4 1.6 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.7
Sault Ste. Marie
190 -25 -28 29 22 33 25 4960 4040 23 30 97 125 660 780 0.9 1.0 950 1030 200 210 3.1 0.4 4.5 0.6 0.33 0.36 0.44 0.48 0.75 -8 4.1
Schreiber
310 -34 -36 27 21 31 24 5960 5010 20 26 103 134 600 730 0.8 850 940 160 170 3.3 0.4 4.7 0.6 0.29 0.32 0.39 0.43 0.67 -10 3
Seaforth
310 -17 -19 30 23 34 26 4100 3290 25 32 108 138 810 930 0.9 1025 1110 160 170 2.5 0.4 3.6 0.6 0.35 0.39 0.45 0.50 0.74 -6 5
Shelburne
495 -22 -24 29 23 33 26 4700 3830 28 36 108 139 740 860 0.9 900 980 150 160 3.1 0.4 4.4 0.6 0.31 0.34 0.40 0.44 0.67 -7 3.5
Simcoe
210 -17 -19 30 24 34 27 3700 2920 28 36 113 144 860 990 1 950 1030 160 170 1.3 0.4 1.9 0.6 0.35 0.39 0.45 0.50 0.74 -6 4
Sioux Lookout
375 -34 -36 28 22 32 25 5950 5030 25 32 97 126 520 620 0.7 710 790 100 110 2.6 0.3 3.7 0.4 0.22 0.24 0.30 0.33 0.52 -12 3
Smiths Falls
130 -25 -27 30 23 34 26 4540 3690 25 32 92 118 730 860 0.8 0.9 850 940 140 2.3 0.4 3.3 0.6 0.32 0.35 0.41 0.45 0.67 -8 2.5
Smithville
185 -16 -18 30 23 34 26 3650 2880 23 29 108 137 800 920 0.9 900 980 160 170 1.5 0.4 2.2 0.6 0.33 0.36 0.42 0.46 0.68 -6 4.2
Smooth Rock Falls
235 -34 -36 29 21 33 24 6250 5290 20 26 92 121 560 680 0.8 850 950 80 2.7 0.3 3.8 0.4 0.25 0.28 0.32 0.35 0.5 -11 3.9
Southampton
180 -17 -19 28 22 32 25 4100 3290 25 32 92 118 800 930 1 830 900 180 190 2.7 0.4 3.9 0.6 0.37 0.41 0.48 0.53 0.8 -6 5.3
South River
355 -27 -29 29 22 33 25 5090 4190 25 32 103 132 830 980 1 975 1060 120 2.8 0.4 3.9 0.6 0.27 0.30 0.35 0.39 0.58 -9 2.5
St. Catharines
105 -16 -18 30 23 34 26 3540 2780 23 29 92 117 770 890 0.9 850 930 160 170 1 0.4 1.5 0.6 0.36 0.40 0.46 0.51 0.75 -5 4.5
St. Marys
310 -18 -20 30 23 34 26 4000 3200 28 36 108 138 820 940 1 1025 1110 160 180 2.2 0.4 3.2 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.5
St. Thomas
225 -16 -18 31 24 35 27 3780 3000 25 32 103 131 900 1030 1 975 1060 180 190 1.4 0.4 2 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.7
Stirling
120 -23 -25 30 23 34 26 4220 3400 25 32 97 124 740 850 0.9 850 930 120 130 1.7 0.4 2.4 0.6 0.31 0.34 0.40 0.44 0.67 -7 2.2
Stratford
360 -18 -20 29 23 33 26 4050 3240 28 36 113 144 820 940 1 1050 1140 160 170 2.3 0.4 3.4 0.6 0.35 0.39 0.45 0.50 0.74 -6 4.5
Strathroy
225 -17 -19 31 24 35 27 3780 3000 25 32 103 131 770 880 0.9 950 1040 180 200 1.9 0.4 2.8 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.7
Sturgeon Falls
205 -28 -30 29 21 33 24 5200 4280 25 32 95 123 700 830 0.9 910 990 140 2.4 0.4 3.3 0.6 0.27 0.30 0.35 0.39 0.58 -9 4.4
Sudbury
275 -28 -30 29 21 33 24 5180 4260 25 32 97 125 650 770 0.8 875 950 200 210 2.5 0.4 3.6 0.6 0.36 0.40 0.46 0.51 0.75 -9 4.5
Sundridge
340 -27 -29 29 22 33 25 5080 4180 25 32 97 125 840 990 1 975 1060 120 2.8 0.4 3.9 0.6 0.27 0.30 0.35 0.39 0.58 -9 2.5
Tavistock
340 -19 -21 29 23 33 26 4100 3290 28 36 113 144 820 940 1 1010 1100 160 170 2.1 0.4 3 0.6 0.35 0.39 0.45 0.50 0.74 -6 4.5
Temagami
300 -30 -33 30 22 34 25 5420 4490 23 30 92 119 650 780 0.8 875 970 120 130 2.6 0.4 3.6 0.6 0.29 0.32 0.37 0.41 0.61 -10 3.9
Thamesford
280 -19 -21 30 23 34 26 3950 3150 28 36 108 138 820 940 0.9 975 1050 160 180 1.9 0.4 2.7 0.6 0.37 0.41 0.48 0.53 0.8 -6 4.4
Thedford
205 -16 -18 31 23 35 26 3710 2930 25 32 103 131 810 930 1.0 1.1 900 980 180 200 2.1 0.4 3.1 0.6 0.37 0.41 0.48 0.53 0.8 -6 5
Thunder Bay
210 -31 -33 29 21 33 24 5650 4710 23 30 108 139 560 690 0.8 710 790 160 180 2.9 0.4 4.2 0.6 0.29 0.32 0.39 0.43 0.67 -10 3.3
Tillsonburg
215 -17 -19 30 24 34 27 3840 3050 25 32 103 131 880 1000 1 980 1060 160 170 1.3 0.4 1.9 0.6 0.34 0.37 0.44 0.48 0.73 -6 3.5
Timmins
300 -34 -36 29 21 33 24 5940 4990 20 26 108 141 560 680 0.8 875 980 100 3.1 0.3 4.3 0.4 0.27 0.30 0.35 0.39 0.55 -11 3.5
Timmins (Porcupine)
295 -34 -36 29 21 33 24 6000 5050 20 26 103 135 560 680 0.8 875 980 100 2.9 0.3 4 0.4 0.29 0.32 0.37 0.41 0.58 -11 3.5
Toronto Metropolitan Region
Etobicoke
160 -20 -22 31 24 35 27 3800 3010 26 33 108 138 720 830 0.8 800 880 160 170 1.1 0.4 1.6 0.6 0.34 0.37 0.44 0.48 0.73 -6 4
North York
175 -20 -22 31 24 35 27 3760 2980 25 32 108 138 730 840 0.8 850 930 150 160 1.2 0.4 1.7 0.6 0.34 0.37 0.44 0.48 0.73 -6 4
Scarborough
180 -20 -22 31 24 35 27 3800 3010 25 32 92 118 730 840 0.9 825 900 160 170 1.2 0.4 1.8 0.6 0.37 0.41 0.47 0.52 0.76 -6 4
Toronto (City Hall)
90 -18 -20 31 23 35 26 3520 2760 25 32 97 124 720 830 0.9 820 900 160 170 0.9 0.4 1.3 0.6 0.34 0.37 0.44 0.48 0.73 -5 4
Trenton
80 -22 -24 29 23 33 26 4110 3300 23 29 97 124 760 870 0.9 850 920 160 170 1.6 0.4 2.3 0.6 0.37 0.41 0.47 0.52 0.76 -6 4
Trout Creek
330 -27 -29 29 22 33 25 5100 4200 25 32 103 133 780 920 0.9 975 1060 120 2.7 0.4 3.7 0.6 0.27 0.30 0.35 0.39 0.58 -9 2.5
Uxbridge
275 -22 -24 30 23 34 26 4240 3410 25 32 103 133 700 810 0.8 850 930 140 150 2.4 0.4 3.5 0.6 0.33 0.36 0.42 0.46 0.68 -7 3.4
Vaughan (Woodbridge)
165 -20 -22 31 24 35 27 4100 3290 26 33 113 145 700 810 0.8 800 880 140 150 1.1 0.4 1.6 0.6 0.34 0.37 0.44 0.48 0.73 -6 4
Vittoria
215 -15 -17 30 24 34 27 3680 2900 25 32 113 143 880 1010 1 950 1030 160 170 1.3 0.4 1.9 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.8
Walkerton
275 -18 -20 30 22 34 25 4300 3470 28 36 103 132 790 920 0.9 1025 1110 160 170 2.7 0.4 3.9 0.6 0.36 0.40 0.46 0.51 0.75 -7 3.8
Wallaceburg
180 -16 -18 31 24 34 27 3600 2830 28 35 97 122 760 870 0.9 825 910 180 190 0.9 0.4 1.3 0.6 0.35 0.39 0.45 0.50 0.74 -6 4.5
Waterloo
330 -19 -21 29 23 33 26 4200 3380 28 36 119 152 780 900 0.9 925 1010 160 170 2 0.4 2.9 0.6 0.29 0.32 0.37 0.41 0.61 -6 4.5
Watford
240 -17 -19 31 24 35 27 3740 2960 25 32 108 137 790 900 0.9 950 1040 160 180 1.9 0.4 2.8 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.5
Wawa
290 -34 -36 26 21 30 24 5840 4900 20 26 93 120 725 880 0.9 950 1040 160 170 3.4 0.4 4.8 0.6 0.30 0.33 0.39 0.43 0.65 -10 3.5
Welland
180 -15 -17 30 23 34 26 3670 2900 23 29 103 131 840 970 1 975 1070 160 170 2 0.4 3 0.6 0.34 0.37 0.43 0.47 0.69 -6 4
West Lorne
215 -16 -18 31 24 35 27 3700 2920 28 35 103 130 840 960 1 900 980 180 190 1.3 0.4 1.9 0.6 0.37 0.41 0.47 0.52 0.76 -6 5
Whitby
85 -20 -22 30 23 34 26 3820 3030 23 30 86 110 760 880 0.9 850 930 160 170 1.2 0.4 1.8 0.6 0.37 0.41 0.48 0.53 0.8 -6 4
Whitby (Brooklin)
160 -20 -22 30 23 34 26 4010 3210 23 30 86 110 770 890 0.9 850 930 140 150 1.9 0.4 2.8 0.6 0.35 0.39 0.45 0.50 0.74 -6 3.8
White River
375 -39 -42 28 21 32 24 6150 5200 20 26 92 120 575 700 0.8 825 910 100 110 3.6 0.4 5 0.6 0.22 0.24 0.30 0.33 0.52 -11 3
Wiarton
185 -19 -21 29 22 33 25 4300 3470 25 32 103 132 740 870 0.9 1000 1070 180 190 2.7 0.4 3.9 0.6 0.34 0.37 0.44 0.48 0.73 -6 4.1
Windsor
185 -16 -18 32 24 35 27 3400 2650 28 35 103 130 800 910 0.9 900 990 180 190 0.8 0.4 1.2 0.6 0.37 0.41 0.47 0.52 0.76 -5 5
Wingham
310 -18 -20 30 23 34 26 4220 3400 28 36 108 138 780 900 0.9 1050 1140 160 170 2.6 0.4 3.8 0.6 0.36 0.40 0.46 0.51 0.75 -6 4
Woodstock
300 -19 -21 30 23 34 26 3910 3110 28 36 113 144 830 950 0.9 930 1010 160 180 1.9 0.4 2.7 0.6 0.34 0.37 0.44 0.48 0.73 -6 4.2
Wyoming
215 -16 -18 31 24 34 27 3700 2920 25 32 103 130 815 930 0.9 900 990 180 200 1.6 0.4 2.4 0.6 0.37 0.41 0.47 0.52 0.76 -6 4.2
Québec
Acton Vale
95 -24 -27 30 23 34 26 4620 3790 21 27 107 138 860 1010 1.0 1.1 1050 1170 180 2.3 0.4 3.4 0.6 0.27 0.28 0.35 0.37 0.55 -8 3.5
Alma
110 -31 -33 28 22 32 25 5800 4860 20 26 91 119 700 850 0.9 1.0 950 1070 160 170 3.3 0.4 4.6 0.6 0.27 0.28 0.35 0.37 0.55 -11 3.8
Amos
295 -34 -36 28 21 32 24 6160 5210 20 26 91 119 670 810 0.9 920 1030 100 3.2 0.3 4.3 0.4 0.25 0.26 0.32 0.34 0.47 -11 3.8
Aylmer
90 -25 -28 30 23 34 26 4520 3620 23 30 91 117 730 870 0.8 0.9 900 1000 160 2.5 0.4 3.6 0.6 0.32 0.34 0.41 0.43 0.64 -8 3.5
Baie-Comeau
60 -27 -29 25 19 29 22 6020 5070 16 21 91 119 680 850 1.0 1.1 1000 1140 220 240 4.3 0.4 6.2 0.6 0.39 0.41 0.50 0.53 0.75 -9 4.8
Baie-Saint-Paul
20 -27 -29 28 21 32 24 5280 4350 18 23 102 133 730 900 0.9 1.0 1000 1150 180 200 3.4 0.6 4.8 0.8 0.37 0.39 0.48 0.50 0.73 -10 3.5
Beauport
45 -26 -29 28 22 32 25 5100 4180 20 26 107 140 980 1180 1.1 1.2 1200 1340 200 210 3.4 0.6 4.8 0.8 0.33 0.35 0.42 0.44 0.65 -9 4
Bedford
55 -24 -26 29 23 33 26 4420 3610 23 29 91 117 880 1040 1.0 1.1 1260 1410 160 2.1 0.4 3.1 0.6 0.29 0.30 0.37 0.39 0.58 -8 2.8
Beloeil
25 -24 -26 30 23 34 26 4500 3680 23 30 91 118 840 1000 1.0 1.1 1025 1150 180 190 2.4 0.4 3.6 0.6 0.29 0.30 0.37 0.39 0.58 -8 3.5
Brome
210 -25 -27 29 23 33 26 4730 3880 23 29 96 123 990 1170 1.1 1.2 1240 1380 160 2.5 0.4 3.6 0.6 0.29 0.30 0.37 0.39 0.58 -8 3
Brossard
15 -24 -26 30 23 34 26 4420 3610 23 30 91 118 800 960 0.9 1.0 1025 1160 180 190 2.4 0.4 3.6 0.6 0.34 0.36 0.44 0.46 0.69 -8 4.3
Buckingham
130 -26 -28 30 23 33 26 4880 3970 23 30 91 118 810 960 0.9 1.0 990 1100 160 2.6 0.4 3.6 0.6 0.31 0.33 0.40 0.42 0.64 -8 2.2
Campbell's Bay
115 -28 -30 30 23 34 26 4900 3980 23 30 96 124 700 840 0.8 0.9 850 950 140 2.6 0.4 3.6 0.6 0.25 0.26 0.32 0.34 0.5 -9 2.8
Chambly
20 -24 -26 30 23 34 26 4450 3630 23 30 91 118 850 1010 1.0 1.1 1000 1130 160 170 2.3 0.4 3.4 0.6 0.31 0.33 0.40 0.42 0.64 -8 3.5
Coaticook
295 -25 -27 28 22 32 25 4750 3840 23 29 96 123 860 1020 1.0 1.1 1060 1170 160 170 2.3 0.6 3.3 0.9 0.27 0.28 0.35 0.37 0.55 -8 3
Contrecoeur
10 -25 -27 30 23 34 26 4500 3680 20 26 102 133 810 970 0.9 1.0 1000 1120 180 190 2.8 0.4 4.1 0.6 0.34 0.36 0.43 0.45 0.66 -8 3.5
Cowansville
120 -25 -27 29 23 33 26 4540 3710 23 30 91 117 940 1110 1.0 1.1 1150 1280 160 2.3 0.4 3.4 0.6 0.29 0.30 0.37 0.39 0.58 -8 2.8
Deux-Montagnes
25 -25 -27 29 23 33 26 4440 3630 23 30 96 125 820 980 0.9 1.0 1025 1160 160 170 2.4 0.4 3.5 0.6 0.29 0.30 0.37 0.39 0.58 -8 3.5
Dolbeau
120 -32 -34 28 22 32 25 6250 5290 22 29 91 120 670 820 0.9 1.0 900 1020 140 150 3.5 0.3 4.8 0.4 0.27 0.28 0.35 0.37 0.53 -12 3.8
Drummondville
85 -26 -28 30 23 34 26 4700 3860 22 29 107 139 870 1030 1.0 1.1 1075 1200 180 2.5 0.4 3.6 0.6 0.27 0.28 0.35 0.37 0.55 -9 3.8
Farnham
60 -24 -26 29 23 33 26 4500 3680 23 30 96 123 910 1080 1.0 1.1 1050 1180 180 2.5 0.4 3.7 0.6 0.29 0.30 0.37 0.39 0.58 -8 2.8
Fort-Coulonge
110 -28 -30 30 23 34 26 4950 4030 23 30 96 124 720 860 0.9 900 1010 100 2.5 0.4 3.5 0.6 0.25 0.26 0.32 0.34 0.5 -9 3
Gagnon
545 -34 -36 24 19 28 22 7600 6600 17 22 80 105 580 730 0.9 1.0 925 1060 140 160 4.6 0.4 6.4 0.6 0.30 0.32 0.39 0.41 0.6 -14 3.7
Gaspé
55 -25 -26 26 20 30 23 5500 4570 19 25 118 153 760 970 1.0 1.1 1100 1260 300 330 4.3 0.6 6.2 0.9 0.37 0.39 0.48 0.50 0.73 -8 3.5
Gatineau
95 -25 -28 30 23 34 26 4600 3690 23 30 91 118 790 940 0.9 1.0 950 1060 160 2.5 0.4 3.6 0.6 0.32 0.34 0.41 0.43 0.64 -8 3.2
Gracefield
175 -28 -31 30 23 34 26 5080 4160 23 30 96 124 700 830 0.9 950 1050 140 2.6 0.4 3.7 0.6 0.25 0.26 0.32 0.34 0.5 -9 2.2
Granby
120 -25 -27 29 23 33 26 4500 3680 23 30 102 131 940 1110 1.0 1.1 1175 1310 160 2.3 0.4 3.4 0.6 0.27 0.28 0.35 0.37 0.55 -8 2.5
Harrington Harbour
30 -27 -29 19 16 23 20 6150 5200 15 20 96 127 900 1120 1.2 1.4 1150 1280 300 330 4.9 0.6 7 0.9 0.56 0.59 0.72 0.76 1.03 -9 5
Havre-Saint-Pierre
5 -27 -29 22 18 26 22 6100 5150 15 20 96 126 780 960 1.1 1.2 1125 1250 300 340 4.1 0.6 5.9 0.9 0.49 0.51 0.63 0.66 0.95 -9 5
Hemmingford
75 -24 -26 30 23 34 26 4380 3570 23 29 91 116 770 920 0.9 1.0 1025 1160 160 2.4 0.4 3.6 0.6 0.31 0.33 0.40 0.42 0.64 -8 3
Hull
65 -25 -28 30 23 34 26 4550 3650 23 30 91 117 730 870 0.8 0.9 900 1000 160 2.4 0.4 3.5 0.6 0.32 0.34 0.41 0.43 0.64 -8 3.2
Iberville
35 -24 -26 29 23 33 26 4450 3630 23 30 91 118 880 1050 1.0 1.1 1010 1140 160 2.2 0.4 3.3 0.6 0.32 0.34 0.41 0.43 0.64 -8 3
Inukjuak
5 -36 -38 21 15 26 19 9150 8100 9 13 54 79 270 370 0.9 420 510 240 270 4.1 0.2 5.9 0.3 0.37 0.39 0.48 0.50 0.69 -15 5.4
Joliette
45 -26 -28 29 23 33 26 4720 3870 21 27 102 133 790 940 0.9 1.0 1000 1120 160 170 3.1 0.4 4.4 0.6 0.28 0.29 0.36 0.38 0.57 -8 2.5
Kuujjuaq
25 -37 -39 24 17 29 21 8550 7520 9 13 54 75 280 380 0.8 525 640 260 290 4.8 0.2 7.1 0.3 0.47 0.49 0.60 0.63 0.85 -14 4
Kuujjuarapik
20 -36 -38 25 17 29 20 7990 6980 12 17 80 113 410 540 0.9 610 720 180 200 4.2 0.3 6 0.4 0.37 0.39 0.48 0.50 0.69 -13 4.6
Lachute
65 -26 -28 29 23 33 26 4640 4570 23 30 96 125 910 1080 1.0 1.1 1075 1200 160 170 2.4 0.4 3.4 0.6 0.31 0.33 0.40 0.42 0.64 -8 2.8
Lac-Mégantic
420 -27 -29 27 22 31 25 5180 4470 23 29 91 117 790 950 0.9 1.0 1025 1150 160 3.2 0.6 4.6 0.9 0.27 0.28 0.35 0.37 0.55 -8 3.5
La Malbaie
25 -26 -28 28 21 32 24 5400 3800 18 23 102 133 640 790 0.8 0.9 900 1040 180 200 3.1 0.6 4.3 0.8 0.37 0.39 0.48 0.50 0.73 -9 3.5
La Pocatière
55 -24 -26 28 22 32 25 5160 4240 18 23 102 133 675 830 0.9 1.0 965 1110 180 190 3.2 0.6 4.5 0.9 0.39 0.41 0.50 0.53 0.75 -8 4.3
La Tuque
165 -30 -32 29 22 33 25 5500 4260 23 30 96 125 720 870 0.9 1.0 930 1040 160 170 3.4 0.4 4.7 0.6 0.27 0.28 0.35 0.37 0.53 -10 2.1
Lennoxville
155 -28 -30 29 22 33 25 4700 3790 23 29 96 123 850 1000 1.0 1.1 1100 1220 160 2.1 0.6 3.1 0.9 0.25 0.26 0.32 0.34 0.5 -8 2.9
Léry
30 -24 -26 29 23 33 26 4420 3610 23 30 91 118 800 960 0.9 1.0 950 1070 180 190 2.3 0.4 3.4 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.5
Loretteville
100 -26 -29 28 22 32 25 5200 4280 20 26 102 133 980 1180 1.1 1.2 1225 1370 200 210 3.7 0.6 5.1 0.8 0.32 0.34 0.41 0.43 0.64 -9 3
Louiseville
15 -25 -28 29 23 33 26 4900 4030 20 26 102 134 800 960 0.9 1.0 1025 1150 160 2.9 0.4 4.1 0.6 0.34 0.36 0.43 0.45 0.66 -9 3
Magog
215 -26 -28 29 23 33 26 4730 3880 23 29 96 123 860 1010 1.0 1.1 1125 1250 160 2.3 0.4 3.4 0.6 0.27 0.28 0.35 0.37 0.55 -8 3.5
Malartic
325 -33 -36 29 21 33 24 6200 5240 20 26 86 112 640 770 0.8 900 1000 100 110 3.3 0.3 4.4 0.4 0.25 0.26 0.32 0.34 0.47 -11 3.6
Maniwaki
180 -30 -32 29 22 33 25 5280 4350 23 30 96 124 700 830 0.9 900 990 100 110 2.4 0.4 3.4 0.6 0.24 0.25 0.31 0.33 0.49 -9 2.2
Masson
50 -26 -28 30 23 33 26 4610 3700 23 30 91 118 790 930 0.9 1.0 975 1080 160 2.4 0.4 3.3 0.6 0.31 0.33 0.40 0.42 0.64 -8 3.2
Matane
5 -24 -26 24 20 28 23 5510 4580 18 23 91 119 640 800 0.9 1.0 1050 1200 220 250 3.7 0.4 5.3 0.6 0.43 0.45 0.55 0.58 0.82 -8 6
Mont-Joli
90 -24 -26 26 21 30 24 5370 4440 18 23 91 119 610 760 0.8 0.9 920 1050 220 240 4.1 0.4 6 0.6 0.41 0.43 0.52 0.55 0.77 -8 5.9
Mont-Laurier
225 -29 -32 29 22 33 25 5320 4390 24 31 102 132 790 940 0.9 1000 1110 160 170 2.6 0.4 3.6 0.6 0.23 0.24 0.30 0.32 0.47 -10 2.2
Montmagny
10 -25 -28 28 22 32 25 5090 4170 20 26 102 133 880 1070 1.0 1.1 1090 1230 180 190 2.9 0.6 4 0.8 0.37 0.39 0.47 0.49 0.73 -9 4
Montréal Region
Beaconsfield
25 -24 -26 30 23 34 26 4440 3630 23 30 91 118 780 930 0.9 1.0 950 1070 180 190 2.3 0.4 3.4 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.5
Dorval
25 -24 -26 30 23 34 26 4400 3590 23 30 91 118 760 910 0.9 1.0 940 1060 180 190 2.4 0.4 3.3 0.6 0.34 0.36 0.44 0.46 0.69 -8 4
Laval
35 -24 -26 29 23 33 26 4500 3680 23 30 96 125 830 990 0.9 1.0 1025 1160 160 170 2.6 0.4 3.9 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.5
Montréal (City Hall)
20 -23 -26 30 23 34 26 4200 3410 23 30 96 125 830 990 0.9 1.0 1025 1160 180 190 2.6 0.4 4 0.6 0.34 0.36 0.44 0.46 0.69 -8 3.5
Montréal-Est
25 -23 -26 30 23 34 26 4470 3650 23 30 96 125 830 990 0.9 1.0 1025 1150 180 190 2.7 0.4 4 0.6 0.34 0.36 0.44 0.46 0.69 -8 3.5
Montréal-Nord
20 -24 -26 30 23 34 26 4470 3650 23 30 96 125 830 990 0.9 1.0 1025 1150 160 170 2.6 0.4 3.9 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.5
Outremont
105 -23 -26 30 23 34 26 4300 3500 23 30 96 125 820 980 0.9 1.0 1025 1160 180 190 2.8 0.4 4.2 0.6 0.34 0.36 0.44 0.46 0.69 -8 3.5
Pierrefonds
25 -24 -26 30 23 34 26 4430 3620 23 30 96 125 800 960 0.9 1.0 960 1080 180 190 2.4 0.4 3.5 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.5
Sainte-Anne-de-Bellevue
35 -24 -26 29 23 33 26 4460 3640 23 30 96 125 780 940 0.9 1.0 960 1080 180 190 2.3 0.4 3.4 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.3
Saint-Lambert
15 -23 -26 30 23 34 26 4400 3590 23 30 96 125 810 970 0.9 1.0 1050 1180 160 170 2.5 0.4 3.8 0.6 0.34 0.36 0.44 0.46 0.69 -8 4
Saint-Laurent
45 -23 -26 30 23 34 26 4270 3470 23 30 96 125 790 940 0.9 1.0 950 1070 160 170 2.5 0.4 3.7 0.6 0.34 0.36 0.44 0.46 0.69 -8 3.5
Verdun
20 -23 -26 30 23 34 26 4200 3410 23 30 91 118 780 930 0.9 1.0 1025 1160 180 190 2.5 0.4 3.8 0.6 0.34 0.36 0.44 0.46 0.69 -8 3.5
Nicolet (Gentilly)
15 -25 -28 29 23 33 26 4900 3980 20 26 107 140 860 1030 1.0 1.1 1025 1150 160 170 2.8 0.4 4 0.6 0.33 0.35 0.42 0.44 0.65 -9 3.5
Nitchequon
545 -39 -41 23 19 27 22 8100 7080 15 20 70 93 500 640 0.9 1.0 825 960 140 160 3.5 0.3 4.6 0.4 0.29 0.30 0.37 0.39 0.55 -14 3.7
Noranda
305 -33 -36 29 21 33 24 6050 5100 20 26 91 119 650 780 0.8 875 970 100 110 3.2 0.3 4.3 0.4 0.27 0.28 0.35 0.37 0.53 -11 3.5
Percé
5 -21 -24 25 19 29 23 5400 4470 16 21 107 139 1000 1260 1.2 1.3 1300 1480 300 330 3.8 0.6 5.5 0.9 0.49 0.51 0.63 0.66 0.95 -7 5.1
Pincourt
25 -24 -26 29 23 33 26 4480 3660 23 30 96 124 780 940 0.9 1.0 950 1070 180 190 2.3 0.4 3.4 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.3
Plessisville
145 -26 -28 29 23 33 26 5100 4180 21 27 107 139 890 1060 1.0 1.1 1150 1280 180 2.8 0.6 4.1 0.9 0.27 0.28 0.35 0.37 0.55 -9 3.2
Port-Cartier
20 -28 -30 25 19 29 22 6060 5110 15 20 106 139 730 940 1.0 1.1 1125 1280 300 330 4.1 0.4 5.8 0.6 0.42 0.44 0.54 0.57 0.8 -9 4
Puvirnituq
5 -36 -38 23 16 29 21 9200 8150 7 10 54 79 210 300 0.9 375 460 240 280 4.5 0.2 6.5 0.3 0.47 0.49 0.60 0.63 0.85 -16 5.4
Québec City Region
Ancienne-Lorette
35 -25 -28 28 23 32 26 5130 4210 20 26 102 133 940 1130 1.1 1.2 1200 1340 200 210 3.4 0.6 4.7 0.8 0.32 0.34 0.41 0.43 0.64 -8 4
Lévis
50 -25 -28 28 22 32 25 5050 4130 20 26 107 140 920 1110 1.0 1.1 1200 1340 160 170 3.3 0.6 4.6 0.8 0.32 0.34 0.41 0.43 0.64 -8 4
Québec
120 -25 -28 28 22 32 25 5080 4160 20 26 107 140 925 1110 1.0 1.1 1210 1350 200 210 3.6 0.6 5 0.8 0.32 0.34 0.41 0.43 0.64 -8 3.5
Sainte-Foy
115 -25 -28 28 23 32 26 5100 4180 20 26 107 140 940 1130 1.1 1.2 1200 1340 180 190 3.7 0.6 5.1 0.8 0.32 0.34 0.41 0.43 0.64 -8 3.5
Sillery
10 -25 -28 28 23 32 26 5070 4150 20 26 107 140 930 1120 1.1 1.2 1200 1340 200 210 3.1 0.6 4.2 0.8 0.32 0.34 0.41 0.43 0.64 -8 3.5
Richmond
150 -25 -27 29 22 33 25 4700 3860 23 30 96 124 870 1030 1.0 1.1 1060 1170 160 2.4 0.6 3.5 0.9 0.25 0.26 0.32 0.34 0.5 -9 3.5
Rimouski
30 -25 -27 26 20 30 23 5300 4370 18 23 91 119 640 800 0.8 0.9 890 1020 200 220 3.8 0.4 5.5 0.6 0.41 0.43 0.52 0.55 0.77 -8 5
Rivière-du-Loup
55 -25 -27 26 21 30 24 5380 4450 18 23 91 119 660 820 0.8 0.9 900 1040 180 190 3.5 0.6 5 0.9 0.39 0.41 0.50 0.53 0.75 -8 4
Roberval
100 -31 -33 28 21 32 24 5750 4810 22 29 91 119 590 720 0.8 910 1030 140 150 3.5 0.3 5 0.4 0.27 0.28 0.35 0.37 0.53 -11 3.8
Rock Island
160 -25 -27 29 23 33 26 4850 3990 23 29 91 116 900 1060 1.0 1.1 1125 1250 160 2 0.4 2.9 0.6 0.27 0.28 0.35 0.37 0.55 -8 3
Rosemère
25 -24 -26 29 23 33 26 4550 3720 23 30 96 125 840 1000 1.0 1.1 1050 1180 160 170 2.6 0.4 3.8 0.6 0.31 0.33 0.40 0.42 0.64 -8 3.3
Rouyn
300 -33 -36 29 21 33 24 6050 5100 20 26 91 119 650 780 0.8 900 1000 100 110 3.1 0.3 4.2 0.4 0.27 0.28 0.35 0.37 0.53 -11 3.5
Saguenay
10 -30 -32 28 22 32 25 5700 4760 18 23 86 112 710 860 0.9 1.0 975 1090 140 150 2.7 0.4 3.7 0.6 0.28 0.29 0.36 0.38 0.54 -10 4.2
Saguenay (Bagotville)
5 -31 -33 28 21 32 24 5700 4760 18 23 86 112 690 840 0.9 1.0 925 1040 160 180 2.7 0.4 3.7 0.6 0.30 0.32 0.38 0.40 0.56 -10 4.2
Saguenay (Jonquière)
135 -30 -32 28 22 32 25 5650 4710 18 23 86 112 710 860 0.9 1.0 925 1040 160 170 3.1 0.4 4.2 0.5 0.27 0.28 0.35 0.37 0.53 -10 4.2
Saguenay (Kénogami)
140 -30 -32 28 22 32 25 5650 4710 18 23 86 112 690 840 0.9 1.0 925 1040 160 170 3.1 0.4 4.2 0.5 0.27 0.28 0.35 0.37 0.53 -10 4.2
Sainte-Agathe-des-Monts
360 -28 -30 28 22 32 25 5390 4470 23 30 96 124 820 970 1.0 1.1 1170 1290 140 3.4 0.4 4.6 0.6 0.27 0.28 0.35 0.37 0.55 -9 2.2
Saint-Eustache
35 -25 -27 29 23 33 26 4500 3680 23 30 96 125 820 980 0.9 1.0 1025 1160 160 170 2.4 0.4 3.5 0.6 0.29 0.30 0.37 0.39 0.58 -8 3.3
Saint-Félicien
105 -32 -34 28 22 32 25 5850 4900 22 29 91 119 570 700 0.8 900 1020 140 150 3.5 0.3 4.9 0.4 0.27 0.28 0.35 0.37 0.53 -11 3.8
Saint-Georges-de-Cacouna
35 -25 -27 26 21 30 24 5400 4470 18 23 91 119 660 820 0.9 1.0 925 1070 180 190 3.2 0.6 4.6 0.9 0.39 0.41 0.50 0.53 0.75 -8 4
Saint-Hubert
25 -24 -26 30 23 34 26 4490 3670 23 30 91 118 820 980 0.9 1.0 1020 1150 180 190 2.5 0.4 3.7 0.6 0.34 0.36 0.44 0.46 0.69 -8 4.6
Saint-Hubert-de-Rivière-du-Loup
310 -26 -28 26 21 30 24 5520 4590 22 29 91 118 740 910 0.9 1.0 1025 1170 180 190 4.4 0.6 6.3 0.9 0.31 0.33 0.40 0.42 0.61 -8 3
Saint-Hyacinthe
35 -24 -27 30 23 34 26 4500 3680 21 27 91 118 840 1000 1.0 1.1 1030 1150 160 2.3 0.4 3.3 0.6 0.27 0.28 0.35 0.37 0.55 -8 3.5
Saint-Jean-sur-Richelieu
35 -24 -26 29 23 33 26 4450 3630 23 30 91 118 880 1050 1.0 1.1 1010 1140 180 2.2 0.4 3.3 0.6 0.32 0.34 0.41 0.43 0.64 -8 3
Saint-Jérôme
95 -26 -28 29 23 33 26 4820 3960 23 30 96 125 830 990 1.0 1.1 1025 1150 160 170 2.7 0.4 3.9 0.6 0.29 0.30 0.37 0.39 0.58 -8 2.5
Saint-Jovite
230 -29 -31 28 22 32 25 5250 4340 23 30 96 124 810 960 1.0 1.1 1025 1130 160 2.8 0.4 3.8 0.5 0.26 0.27 0.33 0.35 0.51 -9 2.2
Saint-Lazare / Hudson
60 -24 -26 30 23 34 26 4520 3700 23 30 96 124 750 900 0.9 1.0 950 1070 180 190 2.3 0.4 3.4 0.6 0.33 0.35 0.42 0.44 0.65 -8 3
Saint-Nicolas
65 -25 -28 28 22 32 25 4990 4070 20 26 102 133 890 1070 1.0 1.1 1200 1340 200 210 3.5 0.6 4.9 0.8 0.33 0.35 0.42 0.44 0.65 -9 4
Salaberry-de-Valleyfield
50 -23 -25 29 23 33 26 4400 3590 23 30 96 124 760 910 0.9 1.0 900 1020 180 2.3 0.4 3.4 0.6 0.33 0.35 0.42 0.44 0.65 -8 3.1
Schefferville
550 -37 -39 24 16 28 20 8550 7520 13 17 64 86 410 540 0.8 800 950 180 200 4.5 0.3 6.4 0.4 0.33 0.35 0.42 0.44 0.59 -15 4.2
Senneterre
310 -34 -36 29 21 33 24 6180 5220 22 29 91 119 740 890 0.9 925 1030 100 110 3.3 0.3 4.6 0.4 0.25 0.26 0.32 0.34 0.47 -11 3.8
Sept-Îles
5 -29 -31 24 18 28 22 6200 5240 15 20 106 139 760 960 1.0 1.1 1125 1270 300 330 4.1 0.4 6 0.6 0.42 0.44 0.54 0.57 0.8 -9 3.9
Shawinigan
60 -26 -29 29 23 33 26 5050 4130 22 29 102 133 820 980 1.0 1.1 1050 1180 180 190 3.1 0.4 4.3 0.6 0.27 0.28 0.35 0.37 0.55 -9 2.2
Shawville
170 -27 -30 30 23 34 26 4880 3970 23 30 96 124 670 800 0.8 0.9 880 990 160 2.8 0.4 4 0.6 0.27 0.28 0.35 0.37 0.55 -8 2.8
Sherbrooke
185 -28 -30 29 23 33 26 4700 3790 23 29 96 123 900 1060 1.0 1.1 1100 1220 160 2.2 0.6 3.2 0.9 0.25 0.26 0.32 0.34 0.5 -8 3.1
Sorel
10 -25 -27 29 23 33 26 4550 3720 20 26 102 133 800 960 0.9 1.0 975 1100 180 190 2.8 0.4 4.1 0.6 0.34 0.36 0.43 0.45 0.66 -8 3.5
Sutton
185 -25 -27 29 23 33 26 4600 3770 23 29 96 123 990 1170 1.1 1.2 1260 1400 160 2.4 0.4 3.5 0.6 0.29 0.30 0.37 0.39 0.58 -8 2.8
Tadoussac
65 -26 -28 27 21 31 24 5450 4520 18 23 96 125 700 880 0.9 1.0 1000 1150 180 190 3.7 0.4 5.3 0.6 0.41 0.43 0.52 0.55 0.77 -10 6.9
Témiscaming
240 -30 -32 30 22 34 25 5020 4100 23 30 96 124 730 870 0.9 940 1030 100 2.5 0.4 3.3 0.5 0.25 0.26 0.32 0.34 0.5 -9 2.7
Terrebonne
20 -25 -27 29 23 33 26 4500 3680 23 30 96 124 830 990 0.9 1.0 1025 1150 160 170 2.6 0.4 3.8 0.6 0.31 0.33 0.40 0.42 0.64 -8 3.5
Thetford Mines
330 -26 -28 28 22 32 25 5120 4200 22 28 107 138 950 1130 1.1 1.2 1230 1370 160 3.5 0.6 5 0.9 0.27 0.28 0.35 0.37 0.55 -9 3.2
Thurso
50 -26 -28 30 23 34 26 4820 3910 23 30 91 118 800 940 0.9 1.0 950 1050 160 2.4 0.4 3.3 0.6 0.31 0.33 0.40 0.42 0.64 -8 2.5
Trois-Rivières
25 -25 -28 29 23 33 26 4900 3980 20 26 107 140 860 1030 1.0 1.1 1050 1180 180 190 2.8 0.4 4 0.6 0.34 0.36 0.43 0.45 0.66 -9 3.1
Val-des-Sources
245 -26 -28 29 22 33 25 4800 3890 23 30 96 124 870 1030 1.0 1.1 1050 1160 160 2.8 0.6 4.1 0.9 0.27 0.28 0.35 0.37 0.55 -9 3.4
Val-d'Or
310 -33 -36 29 21 33 24 6180 5220 20 26 86 113 640 770 0.8 925 1030 100 110 3.4 0.3 4.7 0.4 0.25 0.26 0.32 0.34 0.47 -11 3.8
Varennes
15 -24 -26 30 23 34 26 4500 3680 23 30 96 125 810 970 0.9 1.0 1000 1130 160 170 2.6 0.4 3.8 0.6 0.31 0.33 0.40 0.42 0.64 -8 3.8
Verchères
15 -24 -26 30 23 34 26 4450 3630 23 30 96 125 810 970 0.9 1.0 1000 1130 160 170 2.7 0.4 3.9 0.6 0.34 0.36 0.43 0.45 0.66 -8 3.8
Victoriaville
125 -26 -28 29 23 33 26 4900 3980 21 27 102 132 850 1010 1.0 1.1 1100 1220 180 2.6 0.6 3.8 0.9 0.27 0.28 0.35 0.37 0.55 -9 3.5
Ville-Marie
200 -31 -34 30 22 34 25 5550 4610 23 30 96 125 630 750 0.8 825 910 120 130 2.3 0.4 3.1 0.6 0.31 0.33 0.40 0.42 0.64 -11 4.2
Wakefield
120 -27 -30 30 23 34 26 4820 3910 23 30 91 117 780 930 0.9 1.0 1020 1140 160 2.4 0.4 3.5 0.6 0.27 0.28 0.34 0.36 0.52 -8 2.2
Waterloo
205 -25 -27 29 23 33 26 4650 3810 23 30 96 123 980 1160 1.1 1.2 1250 1390 160 2.5 0.4 3.6 0.6 0.27 0.28 0.35 0.37 0.55 -8 3
Windsor
150 -25 -27 29 23 33 26 4700 3860 23 30 96 123 930 1100 1.0 1.1 1075 1190 160 2.3 0.4 3.4 0.6 0.25 0.26 0.32 0.34 0.5 -8 3.5
New Brunswick
Alma
5 -21 -23 26 20 29 23 4500 3600 18 23 144 183 1175 1360 1.3 1.5 1450 1600 260 270 2.6 0.6 3.9 0.9 0.37 0.41 0.48 0.53 0.76 -7 4.5
Bathurst
10 -23 -26 30 22 34 25 5020 4100 20 26 106 137 775 970 0.9 1.0 1020 1180 180 200 4.1 0.6 5.9 0.9 0.37 0.41 0.48 0.53 0.76 -8 4
Boiestown
65 -25 -28 29 21 33 24 4900 20 26 96 123 800 970 0.9 1.0 1075 1210 180 200 3.6 0.6 5.1 0.9 0.30 0.33 0.39 0.43 0.62 -8 2.8
Campbellton
30 -26 -28 29 22 33 25 5500 4570 20 26 107 139 725 910 0.9 1.0 1025 1180 180 200 4.3 0.4 6 0.6 0.35 0.39 0.45 0.50 0.7 -8 4.1
Edmundston
160 -27 -29 28 22 32 25 5320 4500 23 30 91 118 750 920 0.9 1.0 1000 1130 160 180 3.4 0.6 4.8 0.9 0.30 0.33 0.38 0.42 0.59 -9 2
Fredericton
15 -24 -27 29 22 33 25 4670 3760 22 28 112 143 900 1070 1.0 1.1 1100 1240 160 180 3.1 0.6 4.5 0.9 0.30 0.33 0.38 0.42 0.59 -7 3.5
Gagetown
20 -24 -26 29 22 32 25 4460 3560 20 26 112 143 900 1060 1.0 1.1 1125 1260 180 190 2.8 0.6 4.1 0.9 0.31 0.34 0.40 0.44 0.64 -7 3.5
Grand Falls
115 -27 -30 28 22 32 25 5300 4450 23 30 107 139 850 1040 1.0 1.1 1100 1250 160 180 3.6 0.6 5.1 0.8 0.30 0.33 0.38 0.42 0.59 -8 2.2
Miramichi
5 -24 -26 30 22 34 25 4950 4030 20 26 96 124 825 1030 1.0 1.2 1050 1210 200 220 3.4 0.6 4.8 0.9 0.32 0.35 0.41 0.45 0.64 -7 3.2
Moncton
20 -23 -25 28 21 31 24 4680 3770 20 26 112 143 850 1020 1.0 1.2 1175 1330 220 240 3 0.6 4.3 0.9 0.39 0.43 0.50 0.55 0.79 -7 5.2
Oromocto
20 -24 -26 29 22 33 25 4650 3740 22 28 112 143 900 1060 1.0 1.1 1110 1250 160 170 3 0.6 4.4 0.9 0.30 0.33 0.39 0.43 0.62 -7 3.5
Sackville
15 -22 -24 27 21 30 24 4590 3680 18 23 112 143 975 1160 1.1 1.2 1175 1320 220 240 2.5 0.6 3.7 0.9 0.38 0.42 0.49 0.54 0.77 -7 4.5
Saint Andrews
35 -22 -24 25 20 28 23 4680 3770 19 24 123 156 1000 1130 1.2 1.3 1200 1310 220 230 2.8 0.6 4.1 0.9 0.35 0.39 0.45 0.50 0.7 -7 4.5
Saint John
5 -22 -24 25 20 28 23 4570 3670 18 23 139 176 1100 1250 1.3 1.4 1425 1560 260 270 2.3 0.6 3.4 0.9 0.41 0.45 0.53 0.58 0.83 -7 4.5
Shippagan
5 -22 -24 28 21 32 24 4930 4010 18 23 96 124 800 1000 1.0 1.1 1050 1200 260 290 3.4 0.6 4.7 0.8 0.49 0.54 0.63 0.69 0.99 -7 4.8
St. George
35 -21 -23 25 20 28 23 4680 3770 18 23 123 156 1000 1130 1.2 1.3 1200 1310 220 230 2.8 0.6 4.2 0.9 0.35 0.39 0.45 0.50 0.7 -7 4.5
St. Stephen
20 -24 -26 28 22 31 25 4700 3790 20 25 123 156 1000 1150 1.2 1.3 1160 1280 180 190 2.9 0.6 4.2 0.9 0.33 0.36 0.42 0.46 0.65 -7 4
Woodstock
60 -26 -29 30 22 34 25 4910 3990 22 28 107 138 875 1050 1.0 1.1 1100 1250 160 180 3.1 0.6 4.4 0.9 0.29 0.32 0.37 0.41 0.58 -8 2.4
Nova Scotia
Amherst
25 -21 -24 27 21 31 24 4500 3600 18 23 118 150 950 1130 1.1 1.2 1150 1290 220 240 2.4 0.6 3.5 0.9 0.37 0.41 0.48 0.53 0.76 -6 4.3
Antigonish
10 -17 -20 27 21 31 24 4510 3610 15 19 123 156 1100 1290 1.3 1.4 1250 1380 240 250 2.3 0.6 3.5 0.9 0.42 0.46 0.54 0.59 0.84 -5 4.6
Bridgewater
10 -15 -17 27 20 30 23 4140 3250 16 20 144 181 1300 1450 1.5 1.7 1475 1600 260 280 1.9 0.6 2.9 0.9 0.43 0.47 0.55 0.61 0.85 -5 4
Canso
5 -13 -15 25 20 29 23 4400 3500 15 19 123 155 1325 1470 1.5 1.6 1400 1510 260 1.7 0.6 2.5 0.9 0.48 0.53 0.61 0.67 0.95 -4 7.5
Debert
45 -21 -24 27 21 31 24 4500 3600 18 23 118 150 1000 1180 1.2 1.3 1200 1350 240 260 2.1 0.6 3.1 0.9 0.37 0.41 0.48 0.53 0.76 -6 3.8
Digby
35 -15 -17 25 20 28 23 4020 3130 15 19 130 163 1100 1240 1.3 1.4 1275 1380 260 270 2.2 0.6 3.2 0.9 0.43 0.47 0.55 0.61 0.85 -4 5
Greenwood (CFB)
28 -18 -20 29 22 32 25 4140 3250 16 20 118 149 925 1060 1.1 1.2 1100 1210 280 290 2.7 0.6 4 0.9 0.42 0.46 0.54 0.59 0.84 -5 4.2
Halifax Region
Dartmouth
10 -16 -18 26 20 29 23 4100 3210 18 23 144 181 1250 1380 1.4 1.6 1400 1510 280 290 1.6 0.6 2.4 0.9 0.45 0.50 0.58 0.64 0.91 -5 3.9
Halifax
55 -16 -18 26 20 29 23 4000 3110 17 21 150 189 1350 1490 1.5 1.7 1500 1610 280 290 1.9 0.6 2.8 0.9 0.45 0.50 0.58 0.64 0.91 -5 3.9
Kentville
25 -18 -20 28 21 31 24 4130 3240 17 22 118 149 950 1100 1.1 1.2 1200 1340 260 270 2.6 0.6 3.9 0.9 0.42 0.46 0.54 0.59 0.84 -5 3.2
Liverpool
20 -16 -18 27 20 30 23 3990 3100 16 20 150 188 1325 1450 1.5 1.6 1425 1530 280 290 1.7 0.6 2.5 0.9 0.48 0.53 0.61 0.67 0.95 -5 4.1
Lockeport
5 -14 -16 25 20 28 23 4000 3110 18 22 139 173 1250 1360 1.4 1.5 1450 1550 280 290 1.4 0.6 2.1 0.9 0.47 0.52 0.60 0.66 0.94 -4 5.5
Louisbourg
5 -15 -17 26 20 30 23 4530 3630 15 19 118 149 1300 1460 1.5 1.7 1500 1620 300 2.1 0.7 3.2 1.1 0.51 0.56 0.65 0.72 1 -5 6
Lunenburg
25 -15 -17 26 20 29 23 4140 3250 16 20 144 181 1300 1440 1.5 1.7 1450 1570 260 270 1.9 0.6 2.8 0.9 0.48 0.53 0.61 0.67 0.95 -5 4.1
New Glasgow
30 -19 -21 27 21 31 24 4320 3420 15 19 135 171 975 1150 1.1 1.2 1200 1340 260 280 2.2 0.6 3.2 0.9 0.43 0.47 0.55 0.61 0.85 -6 4.6
North Sydney
20 -16 -19 27 21 31 24 4500 3600 15 19 123 156 1200 1370 1.4 1.6 1475 1600 300 2.4 0.6 3.6 0.9 0.46 0.51 0.59 0.65 0.92 -5 5.6
Pictou
25 -19 -21 27 21 31 24 4310 3410 15 19 107 136 950 1120 1.1 1.2 1175 1310 260 280 2.2 0.6 3.3 0.9 0.43 0.47 0.55 0.61 0.85 -6 4.6
Port Hawkesbury
40 -17 -19 27 21 31 24 4500 3600 15 19 128 162 1325 1500 1.5 1.6 1450 1580 260 2.1 0.6 3.2 0.9 0.48 0.53 0.61 0.67 0.95 -5 4.9
Springhill
185 -20 -23 27 21 31 24 4540 3640 18 23 118 150 1075 1270 1.2 1.3 1175 1320 220 240 3.1 0.6 4.6 0.9 0.37 0.41 0.48 0.53 0.76 -6 4
Stewiacke
25 -20 -22 27 21 30 24 4400 3500 18 23 128 162 1050 1200 1.2 1.3 1250 1380 240 250 1.8 0.6 2.7 0.9 0.39 0.43 0.50 0.55 0.79 -6 4.5
Sydney
5 -16 -19 27 21 31 24 4530 3630 15 19 123 156 1200 1360 1.4 1.6 1475 1600 300 2.3 0.6 3.5 0.9 0.46 0.51 0.59 0.65 0.92 -5 5.6
Tatamagouche
25 -20 -23 27 21 31 24 4380 3480 18 23 118 150 875 1040 1.1 1.2 1150 1290 260 280 2.2 0.6 3.3 0.9 0.43 0.47 0.55 0.61 0.85 -6 4.6
Truro
25 -20 -22 27 21 30 24 4500 3600 18 23 118 150 1000 1170 1.2 1.3 1175 1310 240 260 2 0.6 2.9 0.9 0.37 0.41 0.48 0.53 0.76 -6 3.5
Wolfville
35 -19 -21 28 21 31 24 4140 3250 17 22 118 149 975 1140 1.1 1.2 1175 1310 260 280 2.6 0.6 3.9 0.9 0.42 0.46 0.54 0.59 0.84 -5 3.2
Yarmouth
10 -14 -16 22 19 25 22 3990 3100 19 24 135 168 1125 1230 1.3 1.4 1260 1350 280 290 1.8 0.6 2.7 0.9 0.44 0.48 0.56 0.62 0.87 -4 5.2
Prince Edward Island
Charlottetown
5 -20 -22 26 21 30 24 4460 3650 16 20 107 136 900 1070 1.1 1.2 1150 1290 350 380 2.7 0.6 4 0.9 0.44 0.48 0.56 0.62 0.87 -6 5
Souris
5 -19 -21 27 21 31 24 4550 3650 15 19 112 142 950 1120 1.1 1.2 1130 1250 350 370 2.7 0.6 4.1 0.9 0.45 0.50 0.58 0.64 0.91 -6 5
Summerside
10 -20 -22 27 21 31 24 4600 3690 16 20 112 143 825 1000 1.0 1.1 1060 1210 350 390 3.1 0.6 4.6 0.9 0.47 0.52 0.60 0.66 0.94 -6 5.5
Tignish
10 -20 -22 27 21 31 24 4770 3860 16 20 96 123 800 970 1.0 1.1 1100 1250 350 390 3.2 0.6 4.7 0.9 0.51 0.56 0.66 0.73 1.04 -5 7.5
Newfoundland and Labrador
Argentia
15 -12 -14 21 18 25 22 4600 3620 15 19 107 136 1250 1420 1.5 1.6 1400 1490 400 410 2.4 0.7 3.5 1 0.59 0.65 0.75 0.83 1.11 -4 6.5
Bonavista
15 -14 -16 24 19 28 22 5000 4000 18 23 96 122 825 1010 1.1 1.2 1010 1110 400 430 3.1 0.6 4.7 0.9 0.66 0.73 0.84 0.92 1.24 -4 7.5
Buchans
255 -24 -27 27 20 31 24 5250 4240 13 17 107 138 850 1090 1.0 1.1 1125 1290 200 210 4.7 0.6 6.8 0.9 0.47 0.52 0.60 0.66 0.89 -6 5
Cape Harrison
5 -29 -31 26 16 30 20 6900 5920 10 13 106 143 475 660 0.9 1.0 950 1080 350 400 6.3 0.4 9.3 0.6 0.47 0.52 0.60 0.66 0.89 -9 6
Cape Race
5 -11 -13 19 18 23 22 4900 3900 18 23 130 164 1425 1570 1.7 1.8 1550 1620 400 2.3 0.7 3.4 1 0.82 0.90 1.05 1.16 1.56 -4 7.5
Channel-Port aux Basques
5 -13 -15 19 18 23 22 5000 4000 13 17 123 157 1175 1340 1.4 1.5 1520 1630 450 460 3.6 0.7 5.5 1.1 0.61 0.67 0.78 0.86 1.16 -4 8.3
Corner Brook
35 -16 -18 26 20 30 23 4760 3770 13 17 91 117 875 1080 1.1 1.3 1190 1310 300 320 3.7 0.6 5.3 0.9 0.43 0.47 0.55 0.61 0.81 -6 5
Gander
125 -18 -20 27 20 31 24 5110 4110 18 23 91 117 775 1010 1.0 1.1 1180 1350 280 310 3.7 0.6 5.4 0.9 0.47 0.52 0.60 0.66 0.89 -5 6.3
Grand Bank
5 -14 -15 20 18 24 22 4550 3570 15 19 123 157 1350 1540 1.6 1.8 1525 1640 400 410 2.4 0.7 3.6 1 0.58 0.64 0.74 0.81 1.1 -4 6.5
Grand Falls
60 -26 -29 27 20 31 24 5020 4020 15 19 86 111 775 1010 1.0 1.1 1030 1190 240 260 3.4 0.6 4.9 0.9 0.47 0.52 0.60 0.66 0.89 -6 5.5
Happy Valley-Goose Bay
15 -31 -32 27 19 31 23 6670 5700 18 24 80 107 575 750 0.8 0.9 960 1120 160 180 5.3 0.4 7.7 0.6 0.33 0.36 0.42 0.46 0.62 -11 4.7
Labrador City
550 -36 -38 24 17 28 20 7710 6710 15 20 70 92 500 630 0.8 0.9 880 1020 140 160 4.8 0.3 6.8 0.4 0.31 0.34 0.40 0.44 0.61 -14 4
St. Anthony
10 -25 -27 22 18 26 22 6440 5380 13 17 86 112 800 1070 1.1 1.3 1280 1440 450 500 6.1 0.6 8.9 0.9 0.68 0.75 0.87 0.96 1.3 -8 7.5
Stephenville
25 -16 -18 24 19 28 23 4850 3860 14 18 102 131 1000 1200 1.2 1.3 1275 1390 350 370 4.1 0.6 6.1 0.9 0.45 0.50 0.58 0.64 0.87 -5 6.1
St. John's
65 -15 -16 24 20 28 23 4800 3810 18 23 118 148 1200 1330 1.4 1.6 1575 1650 400 420 2.9 0.7 4.4 1.1 0.61 0.67 0.78 0.86 1.16 -4 7.5
Twin Falls
425 -35 -37 24 17 28 21 7790 6880 15 20 70 93 500 640 0.9 1.0 950 1110 120 130 4.8 0.4 6.8 0.6 0.31 0.34 0.40 0.44 0.61 -14 4
Wabana
75 -15 -17 24 20 27 23 4750 3760 18 23 112 141 1125 1280 1.3 1.4 1500 1590 400 430 3 0.7 4.6 1.1 0.59 0.65 0.75 0.83 1.11 -4 4.8
Wabush
550 -36 -38 24 17 28 20 7710 6710 15 20 70 92 500 630 0.8 0.9 880 1020 140 160 4.8 0.3 6.8 0.4 0.31 0.34 0.40 0.44 0.61 -14 4
Yukon
Aishihik
920 -44 -46 23 15 27 19 7500 6500 8 10 43 56 190 270 0.6 275 340 40 60 1.9 2.0 0.1 3 0.2 0.27 0.28 0.38 0.40 0.6 -14 2.2
Dawson
330 -50 -51 26 16 30 19 8120 7100 10 13 49 65 200 270 0.6 350 440 40 50 2.9 3.0 0.1 4.4 0.2 0.22 0.23 0.31 0.33 0.48 -17 2
Destruction Bay
815 -43 -45 23 14 27 18 7800 6790 8 10 49 64 190 290 0.6 300 380 80 140 1.9 2.0 0.1 3 0.2 0.42 0.44 0.60 0.63 0.96 -14 2.3
Faro
670 -46 -47 25 16 29 20 7300 6310 10 13 33 43 215 300 0.6 315 380 40 50 2.3 2.4 0.1 3.6 0.2 0.26 0.27 0.35 0.37 0.55 -14 2.3
Haines Junction
600 -45 -47 24 14 29 18 7100 6120 8 10 51 66 145 230 0.6 315 400 180 310 2.2 2.3 0.1 3.3 0.2 0.24 0.25 0.34 0.36 0.54 -11 2.5
Snag
595 -51 -53 23 16 27 19 8300 7280 8 10 59 77 290 390 0.6 350 440 40 50 2.2 2.3 0.1 3.4 0.2 0.22 0.23 0.31 0.33 0.48 -17 2.2
Teslin
690 -42 -44 24 15 28 19 6770 5800 10 13 38 49 200 300 0.5 340 400 40 50 3.0 3.2 0.1 4.6 0.2 0.26 0.27 0.34 0.36 0.49 -12 2.2
Watson Lake
685 -46 -48 26 16 30 20 7470 6470 10 13 54 69 250 360 0.6 410 510 60 70 3.2 3.4 0.1 4.9 0.2 0.26 0.27 0.35 0.37 0.55 -15 2
Whitehorse
655 -41 -43 25 15 30 19 6580 5610 8 10 43 56 170 260 0.5 275 340 40 60 2.0 2.1 0.1 3.2 0.2 0.29 0.30 0.38 0.40 0.56 -11 3.7
Northwest Territories
Aklavik
5 -42 -44 26 17 29 20 9600 8540 6 8 49 69 115 170 0.7 250 310 60 80 2.8 2.9 0.1 4.3 0.2 0.31 0.33 0.40 0.42 0.58 -17 2.9
Behchokǫ̀ / Rae-Edzo
160 -42 -44 25 17 28 20 8300 7280 10 13 60 81 175 230 0.6 275 330 80 90 2.3 2.4 0.1 3.5 0.2 0.31 0.33 0.40 0.42 0.58 -17 3.5
Echo Bay / Port Radium
195 -42 -44 22 16 25 19 9300 8250 8 11 60 82 160 210 0.7 250 310 80 90 3.0 3.2 0.1 4.7 0.2 0.41 0.43 0.53 0.56 0.79 -17 4.4
Fort Good Hope
100 -43 -45 28 18 31 21 8700 7660 9 12 60 82 140 190 0.6 280 340 80 90 2.9 3.0 0.1 4.6 0.2 0.34 0.36 0.44 0.46 0.63 -17 2.8
Fort McPherson
25 -44 -46 26 17 29 20 9150 8100 6 8 50 70 145 200 0.7 315 390 60 80 3.2 3.4 0.1 5 0.2 0.31 0.33 0.40 0.42 0.61 -17 2.3
Fort Providence
150 -40 -43 28 18 32 21 7620 6620 10 13 71 94 210 270 0.6 350 420 100 110 2.4 2.5 0.1 3.6 0.2 0.27 0.28 0.35 0.37 0.53 -16 3
Fort Resolution
160 -40 -42 26 18 30 21 7750 6740 10 13 60 80 175 230 0.6 300 360 140 160 2.3 2.4 0.1 3.5 0.2 0.30 0.32 0.39 0.41 0.6 -16 3.3
Fort Simpson
120 -42 -44 28 19 31 22 7660 6660 12 16 76 100 225 290 0.6 360 430 80 2.3 2.4 0.1 3.3 0.1 0.30 0.32 0.39 0.41 0.6 -16 2.4
Fort Smith
205 -41 -43 28 19 32 22 7300 6310 10 13 65 86 250 310 0.6 350 410 80 90 2.3 2.4 0.2 3.5 0.3 0.30 0.32 0.39 0.41 0.6 -15 2.7
Hay River
45 -38 -41 27 18 31 21 7550 6550 10 13 60 79 200 260 0.6 325 390 140 160 2.4 2.5 0.1 3.7 0.2 0.27 0.28 0.35 0.37 0.5 -16 3.3
Inuvik
45 -43 -45 26 17 30 20 9600 8540 6 9 49 69 115 160 0.7 425 530 60 80 3.1 3.3 0.1 4.9 0.2 0.31 0.33 0.40 0.42 0.58 -16 2.6
Mould Bay
5 -44 -46 11 8 15 12 12900 11730 3 5 33 52 25 40 0.9 100 140 140 210 1.5 1.6 0.1 2.3 0.2 0.45 0.47 0.58 0.61 0.87 -20 4.3
Norman Wells
65 -43 -45 28 18 31 21 8510 7480 9 12 60 81 165 220 0.6 320 390 80 3.0 3.2 0.1 4.9 0.2 0.34 0.36 0.44 0.46 0.63 -17 3.1
Tungsten
1340 -49 -51 26 16 30 20 7700 6700 10 13 44 57 315 430 0.8 640 750 40 50 4.3 4.5 0.1 6.7 0.2 0.34 0.36 0.44 0.46 0.66 -16 3
Ulukhaktok / Holman
10 -39 -41 18 12 23 16 10700 9600 3 4 44 65 80 120 0.9 250 310 120 140 2.1 2.2 0.1 3.3 0.2 0.67 0.70 0.86 0.90 1.23 -18 4.9
Wrigley
80 -42 -44 28 18 31 21 8050 7040 10 13 54 71 220 290 0.6 350 420 80 2.8 2.9 0.1 4.3 0.2 0.30 0.32 0.39 0.41 0.6 -16 3
Yellowknife
160 -41 -44 25 17 29 20 8170 7150 10 13 60 81 175 230 0.6 275 330 100 110 2.2 2.3 0.1 3.4 0.2 0.31 0.33 0.40 0.42 0.58 -17 3.8
Nunavut
Alert
5 -43 -44 13 8 18 12 13030 11860 3 4 22 32 20 30 1 150 200 100 140 2.6 2.7 0.1 4 0.2 0.59 0.62 0.75 0.79 1.06 -22 4.3
Arctic Bay
15 -42 -44 14 10 19 14 11900 10760 3 4 38 56 60 100 0.9 150 200 160 200 2.4 2.5 0.1 3.9 0.2 0.43 0.45 0.55 0.58 0.78 -20 4
Arviat
5 -40 -41 22 16 27 20 9850 8780 8 12 65 94 225 290 0.9 300 350 240 260 3.0 3.2 0.2 4.9 0.3 0.45 0.47 0.58 0.61 0.83 -19 6.6
Baker Lake
5 -42 -44 23 15 28 19 10700 9600 5 7 55 80 160 210 0.8 260 310 180 200 3.4 3.6 0.2 5.5 0.3 0.42 0.44 0.54 0.57 0.77 -20 6.5
Eureka
5 -47 -48 12 8 17 12 13500 12310 3 4 27 39 25 40 1 70 90 100 140 1.6 1.7 0.1 2.5 0.2 0.43 0.45 0.55 0.58 0.78 -21 4.3
Igluligaarjuk / Chesterfield Inlet
10 -40 -41 20 14 25 18 10500 9410 5 7 60 88 175 240 0.9 270 320 240 270 3.6 3.8 0.2 6 0.3 0.44 0.46 0.56 0.59 0.79 -19 6.7
Iqaluit
45 -40 -41 17 12 21 16 9980 8900 5 7 58 83 200 310 0.9 433 550 200 230 2.9 3.0 0.2 4.7 0.3 0.51 0.54 0.65 0.68 0.91 -16 4.8
Iqaluktuuttiaq / Cambridge Bay
15 -41 -44 18 13 23 17 11670 10540 4 6 38 58 70 100 0.9 140 170 100 120 1.9 2.0 0.1 3 0.2 0.39 0.41 0.50 0.53 0.71 -21 5
Isachsen
10 -46 -48 12 9 17 13 13600 12410 3 5 27 42 25 40 1 75 100 140 180 1.9 2.0 0.1 3.1 0.2 0.47 0.49 0.60 0.63 0.85 -20 4.3
Kangiqiniq / Rankin Inlet
10 -41 -42 21 15 26 19 10500 9410 5 7 65 95 180 240 0.9 250 300 240 270 3.0 3.2 0.2 4.9 0.3 0.47 0.49 0.60 0.63 0.85 -19 6.7
Kanngiqtugaapik / Clyde River
5 -40 -42 14 10 19 14 11300 10180 5 7 44 61 55 90 0.9 225 280 220 270 4.2 4.4 0.2 6.8 0.3 0.43 0.45 0.55 0.58 0.78 -17 5
Kugluktuk / Coppermine
10 -41 -43 23 16 27 19 10300 9210 6 9 65 94 140 190 0.8 150 180 80 90 3.4 3.6 0.1 5.4 0.2 0.36 0.38 0.46 0.48 0.65 -19 5.1
Nottingham Island
30 -37 -39 16 13 21 17 10000 8920 5 8 54 81 175 260 0.9 325 410 200 230 4.7 4.9 0.2 7.5 0.3 0.61 0.64 0.78 0.82 1.1 -17 7
Resolute
25 -42 -43 11 9 16 13 12360 11210 3 5 27 42 50 80 0.9 140 180 180 220 2.0 2.1 0.1 3.2 0.2 0.46 0.48 0.59 0.62 0.84 -19 6.1
Resolution Island
5 -32 -34 12 10 16 14 9000 7960 5 7 71 99 240 350 0.9 550 650 200 220 5.5 5.8 0.2 9 0.3 0.96 1.01 1.23 1.29 1.74 -14 9.5
Salliq / Coral Harbour
15 -41 -42 20 14 25 18 10720 9620 5 7 65 97 150 210 0.9 280 350 200 230 3.8 4.0 0.2 6.2 0.3 0.45 0.47 0.58 0.61 0.83 -18 5.5
References
(1)Environment Canada, Climate Trends and Variation Bulletin: Annual 2007, 2008.
(2)Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
996 pp., 2007.
(3)American Society of Heating, Refrigerating, and Air-conditioning Engineers, Handbook of Fundamentals, Chapter 14 – Climatic Design Information, Atlanta, GA, 2009.
(4)Lowery, M.D. and Nash, J.E., A comparison of methods of fitting the double exponential distribution. J. of Hydrology, 10 (3), pp. 259–275, 1970.
(5)Newark, M.J., Welsh, L.E., Morris, R.J. and Dnes, W.V. Revised Ground Snow Loads for the 1990 NBC of Canada. Can. J. Civ. Eng., Vol. 16, No. 3, June 1989.
(6)Newark, M.J. A New Look at Ground Snow Loads in Canada. Proceedings, 41st Eastern Snow Conference, Washington, D.C., Vol. 29, pp. 59-63, 1984.
(7)Bruce, J.P. and Clark, R.H. Introduction to Hydrometeorology. Pergammon Press, London, 1966.
(8)Skerlj, P.F. and Surry, D. A Critical Assessment of the DRWPs Used in CAN/CSA-A440-M90. Tenth International Conference on Wind Engineering, Wind Engineering into the 21st Century, Larsen, Larose & Livesay (eds), 1999 Balkema, Rotterdam, ISBN 90 5809 059 0.
(9)Cornick, S., Chown, G.A., et al. Committee Paper on Defining Climate Regions as a Basis for Specifying Requirements for Precipitation Protection for Walls. Institute for Research in Construction, National Research Council, Ottawa, April 2001.
(10)Boyd, D.W. Variations in Air Density over Canada. National Research Council of Canada, Division of Building Research, Technical Note No. 486, June 1967.
(11) Adams, J., Allen, T., Halchuk, S., and Kolaj, M. Canada's 6th Generation Seismic Hazard Model, as Prepared for the 2020 National Building Code. 12th Canadian Conference on Earthquake Engineering, Québec, QC, paper 192-Mkvp-139, 2019.
(12)Halchuk, S., Allen, T., Adams, J., and Onur, T. Contribution of the Leech River Valley - Devil's Mountain Fault System to Seismic Hazard for Victoria, B.C. 12th Canadian Conference on Earthquake Engineering, Québec, QC, paper 192-WGm8-169, 2019.
(13)Kolaj, M., Allen, T., Mayfield, R., Adams, J., and Halchuk, S. Ground-Motion Models for the 6th Generation Seismic Hazard Model of Canada. 12th Canadian Conference on Earthquake Engineering, Québec, QC, paper 192-hHtH-159, 2019.
(14)Cannon, A.J., Jeong, D.I., Zhang, X., and Zwiers, F. W. Climate-Resilient Buildings and Core Public Infrastructure: An Assessment of the Impact of Climate Change on Climatic Design Data in Canada. Environment and Climate Change Canada, Ottawa, ON, 2020.
(15)Gaur, A., Lu, H., Lacasse, M., Hua, G., and Hill, F. Future projected changes in moisture index over Canada. Building and Environment, Vol. 199, 107923, 2021.
(16)Pacific Climate Impacts Consortium (PCIC). Final Reports for Issues 1, 2 and 3. Prepared for the National Research Council of Canada, Climate-Resilient Buildings and Core Public Infrastructure Initiative. University of Victoria, Victoria, British Columbia, 2001.
(17)RWDI. Climate Change Initiative: Development of Climate Change Provisions for Structural Design of Buildings and Implementation Plan in the National Building Code. Phase 2 – Final Report. Prepared for the National Research Council of Canada, Codes Canada, 2020.
(18)RWDI. Addendum Report: Climate Change Factors for Design Wind Pressures and Ground Snow Loads. Prepared for the National Research Council of Canada, Codes Canada, 2021.
(19)Hong, H.P., Tang, Q., Yang, S.C., Cui, X.Z., Cannon, A.J., Lounis, Z., and Irwin, P. Calibration of the design wind load and snow load considering the historical climate statistics and climate change effects. Structural Safety, Vol. 93, 10213, 2021.
(20)Li, S.H., Irwin, P., Lounis, Z., Attar, A., Dale, J., Gibbons, M., and Beaulieu, S. Effects of Nonstationarity of Extreme Wind Speeds and Ground Snow Loads in a Future Canadian Changing Climate. Natural Hazards Review, Vol. 23, No. 4, 04022022, 2022.

Impact analysis

The following summarizes the updates to the climatic design parameters forming part of NBC Table C-2. The revisions are to account for potential future climate change effects expected over the 50-year design life of buildings and building components.

January 2.5% design temperatures (TJan2.5)

This parameter is used for the design of heating systems in buildings. The values of this parameter are projected to increase for all locations in the future as a consequence of climate warming; therefore, the current historical NBC values are deemed appropriate and are recommended to continue to be used for design. Overall, no change to the NBC 2020 design values of this parameter is proposed.

January 1% design temperatures (TJan1)

This parameter is also used for the design of heating systems in buildings. The values of this parameter are projected to increase for all locations in the future as a consequence of climate warming; therefore, the current historical NBC values are considered appropriate and are recommended to continue to be used for design. Overall, no change to the NBC 2020 design values of this parameter is proposed.

July 2.5% dry temperatures (TJuldry2.5)

This parameter is used for the design of cooling and dehumidifying systems in buildings. The projected values indicate an increase for all locations as a consequence of global warming. Therefore, the NBC 2020 values require updating for climate change effects expected over the design life of 50 years (typical). This updating procedure is expected to result in the following changes in value of this parameter:

Province or Territory Number of Locations 2°C < ΔTJuldry2.5 ≤ 3°C 3°C < ΔTJuldry2.5 ≤ 4°C 4°C < ΔTJuldry2.5 ≤ 5°C 5°C < ΔTJuldry2.5 ≤ 6°C 6°C < ΔTJuldry2.5 ≤ 7°C
Alberta 55 0 0 7 47 1
British Columbia 108 0 5 21 80 2
Manitoba 24 0 2 22 0 0
New Brunswick 18 0 18 0 0 0
Newfoundland 18 0 17 1 0 0
Nova Scotia 25 0 25 0 0 0
Northwest Territories 17 1 13 3 0 0
Nunavut 16 0 0 15 1 0
Ontario 230 0 229 1 0 0
Prince Edward Island 4 0 4 0 0 0
Quebec 125 0 119 4 2 0
Saskatchewan 31 0 0 19 12 0
Yukon 9 0 5 4 0 0
Total 680 1 437 97 142 3

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over the 50-year future timeframe range from 2.8°C to 6.5°C. A large fraction of the locations (438 out of 680) are projected to have future increases of less than or equal to 4°C, 97 locations are projected to have changes on the order of 4-5°C, 142 locations are projected to have changes on the order of 5-6°C, and 3 locations, in Alberta and British Columbia, are projected to have changes greater than 6°C.  To minimize the risk of overheating, and depending on the building location, there will likely be a need for cost-effective solutions to implement fenestration shading systems or advanced fenestration and glazing design, enhanced building envelope design, and a review of the air-handing and cooling system design.

Using a July design temperature based on historical observations for the design of mechanical cooling equipment will

  • reduce the risk of oversized cooling equipment
  • maintain energy efficiency and energy costs for cooling
  • minimize equipment short-cycling and maintain service life of equipment
  • reduce the risk of excessive indoor humidity levels

July 2.5% wet temperatures (TJulwet2.5)

This parameter is used for the design of cooling and dehumidifying systems in buildings. The values of this parameter are projected to increase at all locations as a consequence of global warming. Accordingly, the NBC 2020 values require updating for climate change effects expected over the design life of typical building cooling and dehumidifying systems (50 years). This updating procedure is expected to result in the following changes in the value of this parameter:

Province or Territory Number of Locations 1°C < ΔTJulwet2.5 ≤ 2°C 2°C < ΔTJulwet2.5 ≤ 3°C 3°C < ΔTJulwet2.5 ≤ 4°C 4°C < ΔTJulwet2.5 ≤ 5°C 5°C < ΔTJulwet2.5 ≤ 6°C
Alberta 55 0 0 21 34 0
British Columbia 108 0 0 16 92 0
Manitoba 24 0 1 23 0 0
New Brunswick 18 0 0 18 0 0
Newfoundland 18 0 0 18 0 0
Nova Scotia 25 0 5 20 0 0
Northwest Territories 17 0 3 14 0 0
Nunavut 16 0 0 8 8 0
Ontario 230 0 218 12 0 0
Prince Edward Island 4 0 0 4 0 0
Quebec 125 0 106 17 2 0
Saskatchewan 31 0 0 27 4 0
Yukon 9 0 0 9 0 0
Total 680 0 333 207 140 0

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over the 50-year future timeframe range from 2.6°C to 5°C. All locations in Manitoba, New Brunswick, Newfoundland, Nova Scotia, Northwest Territories, Ontario, Prince Edward Island and Yukon are projected to have future increases of less than or equal to 4°C, whereas some locations in Alberta, Nunavut, Quebec and Saskatchewan are projected to have future increases greater than 4°C. To minimize the risk of overheating, there will likely be a need for cost-effective solutions to implement fenestration shading systems or advanced fenestration and glazing design, enhanced building envelope design, and a review of the air-handing and cooling system design.

Using a July design temperature based on historical observations for the design of mechanical cooling equipment will

  • reduce the risk of oversized cooling equipment
  • maintain energy efficiency and energy costs for cooling
  • minimize equipment short-cycling and maintain service life of equipment
  • reduce the risk of excessive indoor humidity levels

Degree-days below 18°C (HDD18)

This parameter is used to identify the required levels of insulation in the building. The values of this parameter are projected to decrease for all locations in the future as a consequence of climate change; therefore, the current values are deemed appropriate and are recommended to continued to be used for design. Overall, no change in the NBC 2020 design values of this parameter is proposed.

15-minute rain (Rain15)

This parameter is used for the design roof drainage systems. The values of this parameter are projected to increase at all reference locations as a consequence of climate change. Therefore, the design values require updating for climate change effects expected over the design life of buildings (50 years). This updating procedure is expected to result in the following changes in the value of this parameter:

Province or Territory Number of Locations ΔRain15 ≤ 20% 20% < ΔRain15 ≤ 30% 30% < ΔRain15 ≤ 40% 40% < ΔRain15 ≤ 50% ΔRain15 > 50%
Alberta 55 0 55 0 0 0
British Columbia 108 0 104 4 0 0
Manitoba 24 0 3 20 1 0
New Brunswick 18 0 18 0 0 0
Newfoundland 18 0 12 6 0 0
Nova Scotia 25 0 25 0 0 0
Northwest Territories 17 0 0 13 3 1
Nunavut 16 0 0 2 10 4
Ontario 230 0 207 23 0 0
Prince Edward Island 4 0 4 0 0 0
Quebec 125 0 73 49 3 0
Saskatchewan 31 0 18 13 0 0
Yukon 9 0 5 4 0 0
Total 680 0 524 134 17 5

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over the 50-year future timeframe range from 21.8% to 56.1%. A large fraction of the locations (524 out of 680) are projected to have future increases of less than or equal to 30%, whereas, 156 locations are projected to have future increases of 30% or more.

Cost impact on roof drainage systems in the NPC

Refer to "Cost Impact on Roof Drainage Systems in NPC" in the supporting document for PCF 1979 for the full cost analysis. A summary is reproduced here.

The cost impact on roof drainage system requirements per Article 2.4.1.4. in the NPC was determined for three archetypal buildings. The cost increase for upsizing the combined primary and emergency roof drainage systems due to the updated 15-minute rainfall values was calculated. This does not account for the impact of the proposed change on alternative acceptable solutions, such as scuppers. The locations impacted and the cost increase for each archetypal building are as follows:

  2-storey 10-storey 20-storey
Locations impacted Min.
cost diff.
Max. cost diff. Avg. cost diff. Locations impacted Min.
cost diff.
Max. cost diff. Avg. cost diff. Locations impacted Min.
cost diff.
Max. cost diff. Avg. cost diff.
NUTable footnote (1) 9 - - - 13 - - - 16 - - -
NT 17 45 743 546 16 55 2094 1503 17 45 6253 3988
YT 9 41 680 325 9 673 1770 1161 9 41 5729 2569
BC 103 45 741 384 107 55 1928 986 104 45 6241 2686
AB 42 65 2000 506 44 65 4845 1308 52 65 9600 2364
SK 26 91 1846 1319 28 82 5206 2780 28 1283 8862 5575
MB 7 91 1665 478 18 82 5184 1247 9 1277 8742 2632
ON 181 100 2029 1764 229 91 5722 3968 181 1410 9741 8711
QC 109 63 1953 1581 112 87 4732 3502 122 63 10733 6744
NB 13 90 1832 1092 12 82 4439 1897 18 1273 10070 3676
PE 1 55 55 55 4 1439 1495 1453 1 55 55 55
NS 10 62 94 65 16 1514 1670 1625 17 62 1327 657
NL 13 60 688 130 12 151 1789 1144 18 60 5790 787

Note to Table:

Footnote 1 Return to table footnote (1) referrer Cost data for Nunavut not available.

 

One-day rain (Rain1day)

This parameter is used for design for the accumulation of rainwater on roofs. The values of this parameter are projected to increase at all locations as a consequence of climate change. Therefore, the values require updating for climate change effects expected over the design life of buildings (50 years). This updating procedure is expected to result in following changes in the values of this parameter:

Province or Territory Number of Locations ΔRain1day ≤ 20% 20% < ΔRain1day ≤ 30% 30% < ΔRain1day ≤ 40% 40% < ΔRain1day ≤ 50% ΔRain1day > 50%
Alberta 55 0 55 0 0 0
British Columbia 108 0 104 4 0 0
Manitoba 24 0 3 20 1 0
New Brunswick 18 0 18 0 0 0
Newfoundland 18 0 12 6 0 0
Nova Scotia 25 0 25 0 0 0
Northwest Territories 17 0 0 13 3 1
Nunavut 16 0 0 2 10 4
Ontario 230 0 207 23 0 0
Prince Edward Island 4 0 4 0 0 0
Quebec 125 0 73 49 3 0
Saskatchewan 31 0 18 13 0 0
Yukon 9 0 5 4 0 0
Total 680 0 524 134 17 5

Across the 680 locations in NBC Table C-2, the projected changes in the value of this parameter over the 50-year future timeframe range from 21.8% to 56.1%. A large fraction of the locations (524 out of 680) are projected to have future increases of less than or equal to 30%, whereas 156 locations are projected to have future increases of 30% or more.

To account for the projected increase in the amount of rain that may fall in a day, and thus to avoid water accumulation and ponding on the roof, the design of the drainage systems would be adjusted, as the value of this parameter would affect the drainage design of flat roofs. The design of the drainage system would need to consider both the number of control flow roof drains and scuppers, and their proper sizing. In the future, there will be a need to design roof areas to drain accumulated water that may result from greater rain loads from the roof.

Moisture index (MI)

This parameter is used to define the minimum levels of protection from precipitation to be provided by cladding assemblies on exterior walls. The following is a summary of the projected changes in values of this parameter as a consequence of climate change over a 50-year horizon, which corresponds to the typical design life of buildings (50 years):

Province or Territory Number of Locations ΔMI ≤ -10% -10% < ΔMI≤ 0 0 < ΔMI≤ 10% 10% < ΔMI≤ 20% ΔMI > 20%
Alberta 55 5 46 4 0 0
British Columbia 108 0 11 52 21 24
Manitoba 24 4 20 0 0 0
New Brunswick 18 0 0 5 13 0
Newfoundland 18 0 0 5 13 0
Nova Scotia 25 0 0 12 13 0
Northwest Territories 17 0 17 0 0 0
Nunavut 16 0 13 3 0 0
Ontario 230 0 63 167 0 0
Prince Edward Island 4 0 0 2 2 0
Quebec 125 0 1 110 14 0
Saskatchewan 31 26 5 0 0 0
Yukon 9 0 7 2 0 0
Total 680 35 183 362 76 24

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over a 50-year future timeframe range from -19.4% to 29.4%. A large fraction of the locations (545 out of 680) are projected to have changes of up to ±10%. A total of 35 locations, located in the prairie provinces of Alberta, Manitoba and Saskatchewan, are projected to have future decreases of greater than 10%, whereas 24 locations, all located in British Columbia, are projected to have future increases of greater than 20%.

The worst-case MI values are recommended for design. This implies that, for locations where future decreases in MI are projected, the current values of MI are recommended for the design of cladding assemblies on exterior walls, whereas for locations where future increases in MI are projected, the future projected values of MI are recommended for design. Overall, 462 locations are projected to have future increases in MI, and 218 locations are projected to have future decreases. Out of the 462 locations projected to have future increases, only 265 locations are associated with projected changes large enough to not be rounded off within one decimal point (the level of accuracy to which MI values are reported in the NBC). Accordingly, the current MI values are updated to increased future projected MI values for these 265 locations and kept unchanged for other locations.

With these changes in MI design values, a cavity between the cladding and the membrane sheathing will be required at 82 additional locations (shown in Figure 1) to minimize the probability of moisture accumulation inboard of the cladding. 

picture1.png

Figure 1. Additional locations in NBC Table C-2 that will require a capillary break for protection from potential moisture damage in the building envelope, taking climate change effects into consideration.

Cost impact on NBC Part 9 of updated moisture index values

Refer to "Cost Impact on Part 9 of Updated Moisture Index Values" in the supporting document for PCF 1979 for the full cost analysis. A summary is reproduced here.

The cost impact with respect to NBC Part 9 requirements for termite and decay protection per NBC 9.3.2.9.(3)(b) was determined for the 56 locations with a moisture index moving from less than or equal to 1 to greater than 1 due to the updated moisture index values. The locations impacted and the cost increases for a sample wood deck using preservative-treated instead of untreated lumber are as follows:

  Northern BC AB Prairies ON QC Atlantic National
NT NU YT SK MB NB PE NS NL
Total locations impacted 0 0 0 4 0 0 0 2 37 8 2 0 3 56
Cost difference per deck ($) n/a n/a n/a 289.20 n/a n/a n/a 271.91 435.24 444.62 444.62 n/a 544.17 415.89

The cost impact with respect to NBC Part 9 requirements for minimum protection from precipitation ingress per NBC Sentence 9.27.2.2.(5) was determined for the 53 new locations that will require a capillary break between the first and second planes of protection due to the updated moisture index values. The material and installation costs for vertical strapping between the cladding and sheathing to provide a capillary break were calculated for an archetypal house. The locations impacted and the cost increase per unit are as follows:

  Northern BC AB Prairies ON QC Atlantic National
NT NU YT SK MB NB PE NS NL
Total locations impacted 0 0 0 1 0 0 0 2 37 8 2 0 3 53
Cost per unit ($) n/a n/a n/a 1706 n/a n/a n/a 1666 1653 1226 1226 n/a 1520 1391

Driving rain wind pressure (DRWP)

This parameter is used for the design of wall assemblies to help ensure that incidental water entry into the assembly is minimized and for the selection of fenestration products. The following is a summary of the projected changes in the values of this parameter as a consequence of climate change over the typical design life of buildings (50 years):

Province or Territory Number of Locations ΔDRWP ≤ -5% -5% < ΔDRWP ≤ 0 0 < ΔDRWP ≤ 5% 5% < ΔDRWP ≤ 10% ΔDRWP > 10%
Alberta 55 0 3 23 21 8
British Columbia 108 0 0 0 42 66
Manitoba 24 0 4 3 12 5
New Brunswick 18 0 0 2 10 6
Newfoundland 18 0 0 5 7 6
Nova Scotia 25 0 1 13 10 1
Northwest Territories 17 0 0 2 6 9
Nunavut 16 0 0 0 2 14
Ontario 230 0 16 35 169 10
Prince Edward Island 4 0 0 1 1 2
Quebec 125 0 14 43 53 15
Saskatchewan 31 1 5 12 11 2
Yukon 9 0 0 0 0 9
Total 680 1 43 139 344 153

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over a 50-year future timeframe range from -5.4% to 17.8%. A large fraction of the locations (636 out of 680) are projected to have future increases in DRWP, whereas 44 locations are projected to have future decreases. Out of the 636 locations projected to have future increases, 548 locations are projected to have changes large enough to not be rounded off within zero decimal places (the level of accuracy to which DRWP values are reported in the NBC). Accordingly, the current DRWP values are updated to increased future projected values for these 548 locations, for the design of wall assemblies and selection of fenestration products, and the current DRWP values are retained for the other locations. The design to ensure the watertightness of waterproofing systems around windows and doors would also need to account for the change in DRWP at locations where the increase is larger than 10% (i.e., for 153 locations).

Cost impact on NBC Part 9 of updated DRWP values

Refer to "Cost Impact on Part 9 of Updated Driving Rain Wind Pressure (DRWP) values" in the supporting document for PCF 1979 for the full cost analysis. A summary is reproduced here.

The cost impact with respect to NBC Part 9 requirements for flashing installation per NBC Clause 9.27.3.8.(4)(c) was determined for 74 locations where the required end-dam height will be increased due to the updated DRWP values. The cost increase of extending the end-dam height of window flashing was calculated for an archetypal house. The locations impacted and the cost increase per unit are as follows:

  Northern BC AB Prairies ON QC Atlantic National
NT NU YT SK MB NB PE NS NL
Total locations
impacted
0 4 1 21 0 3 1 0 9 3 4 16 12 74
Total cost
of extra flashing per unit ($)
n/a Table footnote (1) 4.09 4.96 n/a 1.43 1.36 n/a 2.86 2.04 2.67 1.42 3.54 1.88

Note to Table:

Footnote 1 Return to table footnote (1) referrer Cost data for Nunavut not available.

 

 

1/10 hourly wind pressure (Q10)

The following is a summary of changes projected in the values of this parameter as a consequence of climate change over the typical design life of buildings (50 years):

Province or Territory Number of Locations ΔQ10 ≤ 0% 0% < ΔQ10 ≤ 5% 5% < ΔQ10 ≤ 10% 10% < ΔQ10 ≤ 15% ΔQ10 > 15%
Alberta 55 0 26 29 0 0
British Columbia 108 0 15 48 45 0
Manitoba 24 0 10 14 0 0
New Brunswick 18 0 0 4 14 0
Newfoundland 18 0 0 8 10 0
Nova Scotia 25 0 0 11 14 0
Northwest Territories 17 0 5 12 0 0
Nunavut 16 0 11 5 0 0
Ontario 230 0 0 92 138 0
Prince Edward Island 4 0 0 2 2 0
Quebec 125 0 63 62 0 0
Saskatchewan 31 0 9 22 0 0
Yukon 9 0 9 0 0 0
Total 680 0 148 309 223 0

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over a 50-year future timeframe range from 3.5% to 12%. Since all locations are projected to have future increases in Q10, these increased values are applied as the future projected values. The 1-in-10 reference wind velocity pressure, Q10, is used for the determination of the wind-induced accelerations of buildings for serviceability (see the Commentary entitled Wind Load and Effects in the "Structural Commentaries (User's Guide – NBC 2020: Part 4 of Division B)"). The climate change factor for Q10 is similar to that for Q500 (and Q50); modest increases in building accelerations can be expected. Except for very tall buildings, acceptable accelerations will probably still be obtained without a significant change to structural design. For tall buildings that are very dynamically sensitive, the increase in Q10 may result in some additional structural costs to comply with serviceability criteria with respect to acceleration. Very dynamically sensitive tall buildings are required to be assessed through testing in a wind tunnel, which often allows significant optimization of the structure to be achieved.

1/50 hourly wind pressure (Q50)

The following is a summary of the changes projected in the values of this parameter as a consequence of climate change over the typical design life of buildings (50 years):

Province or Territory Number of Locations ΔQ50 ≤ 0% 0% < ΔQ50 ≤ 5% 5% < ΔQ50 ≤ 10% 10% < ΔQ50 ≤ 15% ΔQ50 > 15%
Alberta 55 0 55 0 0 0
British Columbia 108 0 23 85 0 0
Manitoba 24 0 24 0 0 0
New Brunswick 18 0 0 18 0 0
Newfoundland 18 0 0 18 0 0
Nova Scotia 25 0 0 25 0 0
Northwest Territories 17 0 17 0 0 0
Nunavut 16 0 16 0 0 0
Ontario 230 0 0 230 0 0
Prince Edward Island 4 0 0 4 0 0
Quebec 125 0 125 0 0 0
Saskatchewan 31 0 31 0 0 0
Yukon 9 0 9 0 0 0
Total 680 0 300 380 0 0

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over a 50-year future timeframe range from 5% to 10%. Since all locations are projected to have future increases in Q50, the increased values are applied as the future projected values. Where the increases are higher than 5%, the total deflection of the building may be affected in terms of serviceability and comfort; therefore, the design of the building would need to be verified with respect to increased wind loads and, where warranted, the stiffness of building structural systems would need to be increased to ensure compliance with the serviceability requirements in the NBC 2025. As well, the design of cladding and roofing systems would need to account for increased strength of their connections. The locations where there are increases in reference wind velocity pressure would likely have increases to the cost of the building structure of less than 5%. This, in turn, would increase the total construction cost by less than 0.5%. Considering that these projected cost increases would be more than offset by improved safety and the prevention of wind-related failures, such cost increases are entirely reasonable.

Cost impact on NBC Part 9 of updated 1/50 hourly wind pressure

Refer to "Cost impact of climatic load changes on Part 9: Future projected climate data for snow and wind loads (PCF 1979)" in the supporting document for PCF 1979 for the full cost analysis. A summary is reproduced here.

For structural sufficiency of glass (NBC Sentence 9.6.1.3.(2)), a 128.5 m2, 2-storey detached home, which contained five differently sized windows with glass areas between 0.57 m2 and 1.43 m2, was used as the archetype. In 649 of the 680 locations in NBC Table C-2, the 1-in-50 hourly wind pressures remained below the maximum limits provided in NBC Tables 9.6.1.3.-A, 9.6.1.3.-B and 9.6.1.3.-C before and after the change, resulting in no impact. In 3 of the 31 locations with a potential impact—Cowley, AB; Cape Race, NL; and Resolution Island, NU—the 1-in-50 hourly wind pressure before and after the proposed change exceeded the maximum value of 1.0 kPa provided in the prescriptive table in the NBC; this would require consultation with the window manufacturer for glass thickness and would likely have a cost impact. For the remaining 28 locations, there would be an increased cost for windows of $126.98 to $353.51.

For nailing of framing (nailing of roof trusses, rafters and joists to wall framing; NBC Sentence 9.23.3.4.(3)), a 120 m2 bungalow was used as the archetype. Due to the proposed change, 6 new locations—Argentia, NL; Channel-Port aux Basques, NL; Grand Bank, NL; St. John's, NL; Wabana, NL; and Nottingham Island, NU—will have 1-in-50 hourly wind pressures that are equal to or exceed 0.8 kPa, and roof trusses, rafters or joists would be required to be tied to wall framing with connectors that can resist 3 kN of roof uplift. For 6 these locations, the number of galvanized steel connectors required was calculated to be approximately 72, resulting in a cost increase of $437.04.

For fasteners for sheathing (NBC Article 9.23.3.5.), a 128.5 m2, 2-storey detached house was used as the archetype. In 667 of the 680 locations in NBC Table C-2, the 1-in-50 hourly wind pressures remained below 0.8 kPa, resulting in no impact. Seven of the 13 remaining locations already have a 1-in-50 hourly wind pressure greater than 0.8 kPa in the current NBC Table C-2, resulting in no impact. The same 6 locations noted above will have 1-in-50 hourly wind pressures that exceed 0.8 kPa due to the proposed change, resulting in the following impacts:

  • For roof sheathing, the 6 new locations would require larger fasteners and fasteners spaced at 50 mm within 1 m of the roof edge. The cost increase using common wire nails was estimated to be $468.68 for each location.
  • For wall sheathing, the 6 new locations would require braced wall panels with wood-based wall sheathing, resulting in a cost increase of $1,125.30 for each location.   

For anchorage of building frames (NBC Sentence 9.23.6.1.(3)), the same 6 new locations noted above will have 1-in-50 hourly wind pressures that exceed 0.8 kPa, resulting in an increase in the number of anchor bolts by 15 for a total cost increase of $94.20.

For required roof sheathing (NBC Sentence 9.23.16.1.(1)), a 128.5 m2 2-storey detached bungalow was used as the archetype. The same 6 locations noted above would be impacted by the proposed change and be required to meet Subsection 9.23.16. The cost increase for going from a sheathing deemed too thin for truss spacing in NBC Sentence 9.23.16.7.(2) to a compliant plywood sheathing was approximately $168.82.

For lumber roof sheathing (NBC Article 9.23.16.5.), the roof area of a 128.5 m2 2-storey detached house was used as the archetype. The same 6 locations noted above would be impacted by the proposed change and be required to have lumber roof sheathing installed diagonally instead of horizontally, per NBC Sentence 9.23.16.5., resulting in a cost increase of approximately $311.67 for each location.

For the attachment of cladding to flat insulating concrete form (ICF) wall units (NBC Sentence 9.27.5.4.(2)), a 128.5 m2 2-storey detached house was used as the archetype. In 612 of the 680 locations in NBC Table C-2, the 1-in-50 hourly wind pressure is equal to or less than 0.6 kPa before and after the proposed change, resulting in no impact. In 34 of the remaining 68 locations, the 1-in-50 hourly wind pressure is greater than 0.6 kPa before and after the proposed change, so the impact is assumed to be minimal and would account for additional fasteners. The greatest impact would be experienced where the 1-in-50 hourly wind pressure increases from equal to or less than 0.60 kPa to more than 0.6 kPa after the proposed change, which occurs in the remaining 34 locations. This resulted in an approximate cost increase of $2,009.15 in these locations, representing the different material costs for fasteners into concrete, the additional labour, and the reduced daily output to attach the furring through the flat ICF wall units into the solid concrete back-up wall.

1/50 snow load Ss (Ss50)

The following is a summary of the changes projected in the values of this parameter as a consequence of climate change over the typical design life of buildings (50 years):

Province or Territory Number of Locations ΔSs50 < 0% ΔSs50 = 0% 0% < ΔSs50 ≤ 2% 2% < ΔSs50 < 5% ΔSs50= 5%
Alberta 55 0 55 0 0 0
British Columbia 108 0 108 0 0 0
Manitoba 24 0 24 0 0 0
New Brunswick 18 0 18 0 0 0
Newfoundland 18 0 18 0 0 0
Nova Scotia 25 0 25 0 0 0
Northwest Territories 17 0 0 0 0 17
Nunavut 16 0 0 0 0 16
Ontario 230 0 230 0 0 0
Prince Edward Island 4 0 4 0 0 0
Quebec 125 0 125 0 0 0
Saskatchewan 31 0 31 0 0 0
Yukon 9 0 0 0 0 9
Total 680 0 638 0 0 42

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over a 50-year future timeframe range from 0% to 5%. All 638 locations in the provinces of Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Prince Edward Island, Quebec and Saskatchewan are projected to have no change in Ss50 in the future; accordingly, the design values for these locations remain the same as the current values. For the remaining 42 locations in the Northwest Territories, Nunavut and Yukon, a future increase in snow loads of 5% is projected and, as such, the future projected values are the recommended design values for those locations. Although the projected increase in snow loading in the North is greater than 4%, it is anticipated that this proposed change will have a negligible effect on total building costs in the future.

1/50 snow load Sr (Sr50)

The following is a summary of the changes projected in the values of this parameter as a consequence of climate change over the typical design life of buildings (50 years):

Province or Territory Number of Locations ΔSr50 < 0% ΔSr50 = 0% 0% < ΔSr50 ≤ 2% 2% < ΔSr50 < 5% ΔSr50= 5%
Alberta 55 0 55 0 0 0
British Columbia 108 0 108 0 0 0
Manitoba 24 0 24 0 0 0
New Brunswick 18 0 18 0 0 0
Newfoundland 18 0 18 0 0 0
Nova Scotia 25 0 25 0 0 0
Northwest Territories 17 0 0 0 0 17
Nunavut 16 0 0 0 0 16
Ontario 230 0 230 0 0 0
Prince Edward Island 4 0 4 0 0 0
Quebec 125 0 125 0 0 0
Saskatchewan 31 0 31 0 0 0
Yukon 9 0 0 0 0 9
Total 680 0 638 0 0 42

Across the 680 locations in NBC Table C-2, the projected changes in the values of this parameter over a 50-year future timeframe range from 0% to 5%. All 638 locations in the provinces of Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Prince Edward Island, Quebec and Saskatchewan are projected to have no change in Sr50 in the future; accordingly, the design values for these locations remain the same as the current values. For the remaining 42 locations in the Northwest Territories, Nunavut and Yukon, a future increase in snow loads of 5% is projected and, as such, the future projected values are the recommended design values for those locations. Although the projected increase in snow loading in the North is higher than 4%, it is anticipated that this proposed change will have a negligible effect on total building costs in the future.

Cost impact on NBC Part 9 of updated 1/50 snow loads

Refer to "Cost impact of climatic load changes on Part 9: Future projected climate data for snow and wind loads (PCF 1979)" in the supporting document for PCF 1979 for the full cost analysis. A summary is reproduced here.

For platforms subject to snow and occupancy loads (NBC Sentence 9.4.2.3.(1)), a 3.5 m by 4 m exterior platform was assessed as the archetype. Of the 42 locations impacted by the updated 1/50 snow loads, 29 locations had specified snow loads less than 1.9 kPa before and after the proposed change, resulting in no impact. Of the 13 remaining locations, 6 locations had specified snow loads that remained within the same range before and after the proposed change, resulting in no impact. Of the 7 remaining locations, using the archetype, span tables, and costs from RSMeans, only 2 locations had a cost increase—$47.77 in Tungsten, NT, and $126.43 in Kugluktuk/Coppermine, NU.

For performance of windows, doors and skylights (NBC Sentence 9.7.3.1.(2)), the magnitude of the cost impact could not be determined without industry knowledge of the structural design of skylights, including the capacity of the skylight frames and glazing.

For columns (NBC Sub 9.17.1.1.(1)(b)(ii)), a 2.44 m by 4 m exterior platform that is raised 3 m from the ground by 3 columns was assessed. In 41 of the 42 locations impacted by the updated 1/50 snow loads, the sum of the specified snow load and the occupancy load remained below 4.8 kPa before and after the proposed change, resulting in no impact. It was found that there was no change in cost in the last location—Resolution Island, NU—as the same column size was applicable before and after the change.

For ridge support (NBC Sentence 9.23.14.8.(5) and NBC Table 9.23.14.8.), a 120 m2 bungalow was used as the archetype. In 32 of the 42 locations impacted by the updated 1/50 snow loads, the specified snow load remained within the same range before and after the proposed change, resulting in no impact. Of the 10 remaining locations, 3 were not impacted because the same number of nails were sufficient before and after the proposed change. In the 7 remaining locations, the maximum number of additional nails required was 3 nails, resulting in an additional material cost of $5.45 in Eureka, NU.

For ICF lintels (NBC Sentence 9.20.17.4.(3) and NBC Span Tables 9.20.17.4.-A, 9.20.17.4.-B and 9.20.17.4.-C), an approximately 120 m2 bungalow was used as the archetype, assuming 150 mm thick ICF walls. ICF lintel sizes before and after the proposed change were analyzed where the ground snow load exceeded 3.33 kPa. In 31 of the 42 locations impacted by the updated 1/50 snow loads, the ICF lintel size was sufficient to support the snow load before and after the proposed change, resulting in no impact. In Resolution Island, NU, the ground snow load exceeded both those listed in the NBC span tables and those provided by an ICF manufacturer and will likely require a structural engineer to design using NBC Part 4 with additional material and labour costs. For the 10 remaining locations in the Yukon, Northwest Territories and Nunavut, there was an increased cost for ICF lintels of $6.71 to $32.63.

For spans for joists, rafters and beams (NBC Sentence 9.23.4.2.(1)), an approximately 120 m2 bungalow was used as the archetype. In 38 of the 42 locations impacted by the updated 1/50 snow loads, the specified snow load before and after the proposed change remained within the same range, resulting in no impact. The impacts on the remaining 4 locations—Fort Smith, NT; Tungsten, NT; Eureka, NU; and, Kugluktuk, NU—are as follows:

  • For roof joists (NBC Span Tables 9.23.4.2.-D and 9.23.4.2.-E), there was no impact in Fort Smith, NT, and Tungsten, NT, because the same roof joist size was sufficient before and after the proposed change. The cost increase in Eureka, NU, and Kugluktuk, NU, was approximately $1,850.00.
  • For roof rafters (NBC Span Tables 9.23.4.2.-F and 9.23.4.2.-G), there was no impact in Kugluktuk, NU because the size of the roof rafters was sufficient before and after the proposed change. There was a cost increase of $255.30 to $1,342.89 in the 3 remaining locations.
  • For built-up ridge beams and lintels supporting the roof (NBC Span Table 9.23.4.2.-L), there was no impact in Tungsten, NT, because the size of the built-up ridge beam was sufficient before and after the proposed change. There was a cost increase of $140.24 to $262.66 in the 3 remaining locations.
  • For lintels of various wood species (NBC Span Tables 9.23.12.3.-A, 9.23.12.3.-B, 9.23.12.3.-C and 9.23.12.3.-D), there was a cost increase in all 4 locations of $32.13 to $84.47.

Uniform hazard vs. uniform risk
The introduction of new data for snow and wind loads reflects a change in the approach used to assess reliability in NBC Part 4 from "uniform hazard" to "uniform risk":

  • New specified wind and snow load values are proposed that reflect a uniform risk by reducing the current load factors of 1.4 and 1.5, respectively, to 1.0 and by using 500-year recurrence wind loads and 1000-year recurrence snow loads.
  • New parameters, winter average temperature and wind speed, are introduced (for snow drifting calculations on roofs).

The impacts of these changes are addressed in PCF 1980, which incorporates proposed climate-related changes in NBC Part 4, including the uniform risk approach.

Most importantly, this new approach will provide a more uniform level of safety across the country, depending on the site-specific climate, that accounts for climate projections over a 50-year horizon but keeps the same target level of safety (currently, a probability of failure of 0.001 during the 50-year assumed service life). In addition, this will harmonize the approach used for climatic loads with the approach used for seismic effects (2475-year recurrence of design earthquake).

Overall, the proposed changes to NBC Table C-2 will result in buildings with a lower risk of failure during their entire service compared to past practice. While the changes in some locations may seem significant, the proposed approach remains reasonably simple and is not disruptive to the current practice.

In most cases, it is expected that common construction methods, material spacings and design considerations would prove to be resilient enough that no significant additional measures or costs would be needed to satisfy the engineering design resulting from the shift to the proposed uniform risk approach and climate change factors.

Enforcement implications

There are no foreseeable enforcement implications.

Who is affected

Designers, architects, building regulators and building owners.

Supporting Document(s)

OBJECTIVE-BASED ANALYSIS OF NEW OR CHANGED PROVISIONS

N/A
Date modified: